School of Engineering
Showing 101-200 of 265 Results
-
Taigyu Joo
Postdoctoral Scholar, Chemical Engineering
BioTaigyu Joo (TJ) is a postdoctoral researcher in Professor William Tarpeh's group. His research focuses on designing membranes for separating ions and gases from wastewater, with an emphasis on electrochemical separation techniques.
-
Noa Katz
Postdoctoral Scholar, Chemical Engineering
BioNoa Katz is a Stanford Science Fellow and an EMBO and Fulbright postdoctoral scholar at Stanford University. She implements biomolecular gene circuits to study and manipulate the central nervous system to promote therapeutic applications for neural repair and autism.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Michael Kopp
Graduate Visiting Researcher Student, Chemical Engineering
BioChemistry master's student from Germany in the group of Prof. Zhenan Bao
-
Sang-Won Lee
Postdoctoral Scholar, Chemical Engineering
BioGoogle scholar profile_https://scholar.google.com/citations?authuser=1&user=MMIaMDkAAAAJ
Linked in profile_https://www.linkedin.com/in/%E2%80%8Dsang-won-lee-918495226/ -
Ricardo B Levy
Adjunct Professor, Chemical Engineering
BioRicardo Levy is an executive and entrepreneur whose career spans more than three decades of founding and building successful businesses. Born and raised in South America to a European immigrant family, he completed engineering studies in the United States at Stanford and Princeton before returning to South America to run a family business. In 1969 he sold the business and returned to the United States to complete his Ph.D. at Stanford in the field of catalytic chemistry. In 1974, after a number of years in the petroleum and petrochemical industry, he co-founded his first entrepreneurial venture, Catalytica, a research and development firm serving the chemical, pharmaceutical, and clean energy industries. The firm’s discoveries resulted in over one hundred patents and led to the formation of three companies, one of which became, under Levy’s leadership, the largest supplier to the pharmaceutical industry in North America and was sold to European firm DSM in 2000. He has served on several public and private Boards, is Lead Director of the Board of a private analytics software company, and serves on the Board of Aquarius Energy, Inc. From 2010 to 2016 served on the Advisory Board of the Santa Clara University Miller Center for Social Entrepreneurship, a global incubator of social entrepreneurs. He continues to be a mentor for that program. He is a Lecturer at the Stanford University Chemical Engineering Department, where he teaches a course on entrepreneurship, leadership and new venture creation. He is the author of the book “Letters to a Young Entrepreneur: Succeeding in Business Without Losing at Life – A Leader’s Ongoing Journey” published in 2015. Throughout his life, Dr. Levy has pursued a keen interest in spirituality and personal growth and his conviction that a person’s inner beliefs and purpose are deeply linked to business success. He has continually applied his diverse studies to his roles as a business leader, mentor and teacher.
-
Alam Mahmud
Postdoctoral Scholar, Chemical Engineering
BioA curious individual, seeking truth and exploring wonders, as ever
-
Danielle Mai
Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering
BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).
-
Jade Marcus
Ph.D. Student in Chemical Engineering, admitted Autumn 2023
Current Research and Scholarly InterestsActivating mg-silicates for fertilizer applications to remove CO2 and reduce N2O emissions while increasing crop yields, plant resiliency, and soil health
-
Daniela Marin
Ph.D. Student in Chemical Engineering, admitted Autumn 2020
Other Tech - Graduate, Stanford Nano Shared Facilities Service CenterBioDaniela Marin is a first-year graduate student at Stanford University. She previously worked as a post-undergraduate researcher at the National Renewable Energy Laboratory and worked toward advancing the commercialization of bio-derived materials and methods of plastics recycling. Daniela holds a B.S. in Chemical Engineering and a B.A. in Physics through a dual-degree program with Columbia University and William Jewell College. Her education is combined with undergraduate research that focused on mitigating the effects of viscous fingering using step-growth polymerization to stabilize the instability. Her transition to Columbia introduced her to the field of atmospheric aerosols where she worked with Professor V. Faye McNeill’s group to investigate a photoinduced particle growth process and its role in secondary organic aerosol formation. She is enthusiastic about using her technical abilities and interest in the environment to contribute to Stanford Chemical Engineering's mission of developing technologies that will improve and maintain environmental health.
-
Meagan Mauter
Associate Professor of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering and of Civil & Environmental Engineering
BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.
Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.
Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University. -
Angela McIntyre
Academic Prog Prof 3, Program-Bao Z.
Current Role at StanfordAngela McIntyre is the Executive Director of the Stanford Wearable Electronics (eWEAR) Initiative. She manages the eWEAR affiliates program and provides member companies opportunities to connect with research and events related to wearables at Stanford University. As a primary contact to eWEAR, Angela fosters membership, assists in forming collaborations between industry and faculty, leads eWEAR events, and is an evangelist for wearables research at Stanford.
-
Mohammad Javad Mirshojaeian Hosseini
Postdoctoral Scholar, Chemical Engineering
BioWith over five years of experience, my work focuses on designing, fabricating, and characterizing flexible nanostructures and organic neuromorphic circuits. My expertise extends to hands-on experience in ISO 4 cleanrooms and fabrication labs, employing a variety of techniques such as electron beam and thermal PVD, ALD, sputtering, photolithography, CVD, profilometry, and wet chemical processing. I have a strong foundation in advanced materials and technologies, including neuromorphic systems, nanofabrication, biosensors, lab-on-a-chip technologies, printing electronics, and organic nanoelectronics.
Currently, I am a postdoctoral researcher at Stanford University, where I explore stretchable neuromorphic e-skin and flexible electronics, particularly for biopotential monitoring and soft robotics applications. My multidisciplinary expertise enables me to contribute to projects that combine neuromorphic computing, smart materials, and neuroscience. These align with my long-term research goals of advancing neuromorphic systems and developing novel technologies at the interface of artificial intelligence, smart materials, and organic electronics. -
David Myung, MD, PhD
Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
Mesenchymal stem cell therapy for corneal and ocular surface regeneration
Engineered biomolecule therapies for promote corneal wound healing
Telemedicine in ophthalmology -
Jake Owens
Masters Student in Chemical Engineering, admitted Spring 2025
Life Science Research Professional 1, Program-Tang, S.Current Role at StanfordLife Science Research Professional in the lab of Sindy Tang
-
Daniswara Krisna Prabatha
Masters Student in Chemical Engineering, admitted Autumn 2024
BioAn MS Student in Chemical Engineering at Stanford University, currently serving as a Process Engineer at Pertamina’s Oil and Gas Refinery in Indonesia. Holds a Bachelor’s degree in Chemical Engineering from Universitas Gadjah Mada and a Doctorate in Human Resource Development from Universitas Airlangga.
-
Jian Qin
Associate Professor of Chemical Engineering
BioJian Qin is an Associate Professor in the Department of Chemical Engineering at the Stanford University. His research focuses on development of microscopic understanding of structural and physical properties of soft matters by using a combination of analytical theory, scaling argument, numerical computation, and molecular simulation. He worked as a postdoctoral scholar with Juan de Pablo in the Institute for Molecular Engineering at the University of Chicago and with Scott Milner in the Department of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. in the Department of Chemical Engineering and Materials Science at the University of Minnesota under the supervision of David Morse and Frank Bates. His research covers self-assembly of multi-component polymeric systems, molecular origin of entanglement and polymer melt rheology, coacervation of polyelectrolytes, Coulomb interactions in dielectrically heterogeneous electrolytes, and surface charge polarizations in particulate aggregates in the absence or presence of flow.
-
Anja Redecker, MD
Postdoctoral Scholar, Chemical Engineering
BioAnja Redecker attended medical school in Germany (RWTH Aachen). For her doctoral thesis - under the guidance of Univ.-Prof. Dr. rer. nat. Lüscher – she studied the functions of a protein called ASH2L, which plays a role in tumorigenesis. She analyzed the effects of ASH2L domain deletion mutants on cell growth and histone trimethylation as well as targeted ASH2L fused to dCas9 to specific promoters and examined its effects on transcription activation.
Her current research in the Swartz Lab at Stanford University focusses on engineering Hepatitis B core virus-like particles (HBc VLP) for targeted delivery of chemotherapeutics and for vaccines. The envisioned targeting delivery system allows loading the HBc VLPs with chemotherapeutics and attaching targeting ligands like single chain antibody fragments to the HBc VLP surface. This would increase targeted accumulation of the chemotherapeutic at the tumor site and decrease therapy-limiting side effects by minimizing off-target effects. To combat any new pandemic efficiently, vaccines need to be engineered and produced quickly. This fast response can be made possible by using pre-produced HBc VLPs to which the antigen of the new circulating pathogen can be attached. This technology has the potential to curb the outbreak of a new pandemic. -
Laura Rijns
Postdoctoral Scholar, Chemical Engineering
BioLaura Rijns was born in the Netherlands (Nov 10, 1996) and is currently a postdoc at Stanford University with prof. Zhenan Bao in close collaboration with prof. Karl Deisseroth, developing new (opto)genetic, electrical and chemical tools to improve the modulation of neurons both in-vitro and in-vivo.
Laura obtained her PhD (2023) in Biomedical Engineering “cum laude” from Eindhoven University of Technology (TU/e) with prof. Patricia Dankers and prof. E.W. (Bert) Meijer. Supramolecular hydrogels as mimics of the extracellular matrix were developed for cell and organoid culture.
Prior to graduate school, Laura received her BSc (2017) and MSc (2019) in Biomedical Engineering at TU/e in the lab of prof. E.W. (Bert) Meijer, focused on supramolecular assemblies. During her undergraduate studies, she was the Lab Captain of the iGEM TU/e 2016 team, studying regulatable scaffold proteins. In 2017, she worked at UC Santa Barbara in the group of prof. Songi Han, studying liquid-liquid phase separated coacervate polymers. In 2019 and 2023, she worked at EPFL (Switzerland) with prof. Maartje Bastings, studying multivalent interactions using DNA origami. -
Elizabeth Sattely
Associate Professor of Chemical Engineering
BioPlants have an extraordinary capacity to harvest atmospheric CO2 and sunlight for the production of energy-rich biopolymers, clinically used drugs, and other biologically active small molecules. The metabolic pathways that produce these compounds are key to developing sustainable biofuel feedstocks, protecting crops from pathogens, and discovering new natural-product based therapeutics for human disease. These applications motivate us to find new ways to elucidate and engineer plant metabolism. We use a multidisciplinary approach combining chemistry, enzymology, genetics, and metabolomics to tackle problems that include new methods for delignification of lignocellulosic biomass and the engineering of plant antibiotic biosynthesis.
-
Alay Shah
Masters Student in Chemical Engineering, admitted Spring 2024
Bio→ Graduate Chemical Engineering student.
→ Previously, Process Engineer at Kite, a Gilead Company.
→ Bachelors in Biomedical Engineering at the University of Texas, Austin.
→ 5 years of experience working in cGMP pharmaceutical manufacturing and upstream process development. Working knowledge of cell and gene therapy, lean manufacturing, risk assessment &mitigation, IOPQ Validation, quality systems, eQRMS, asset lifecycle management, SAP ERP, Syncade MES, Oracle EBS, LIMS, ISO standards and FDA regulations.
→ Through Stanford's MS program, I aim to build upon my biomanufacturing experience, further developing my skillsets in bioreactor design and data analytics to model and improve standardized development of therapeutics for patients -
Eric S.G. Shaqfeh
Lester Levi Carter Professor and Professor of Mechanical Engineering
Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.