School of Engineering

Showing 1-50 of 160 Results

  • Maneesh Agrawala

    Maneesh Agrawala

    Forest Baskett Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsComputer Graphics, Human Computer Interaction and Visualization.

  • Amin Arbabian

    Amin Arbabian

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsMy group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.

  • Nicholas Bambos

    Nicholas Bambos

    Richard W. Weiland Professor in the School of Engineering and Professor of Electrical Engineering

    BioNick Bambos is a Professor at Stanford University, having a joint appointment in the Department of Electrical Engineering and the Department of Management Science & Engineering. He heads the Network Architecture and Performance Engineering research group at Stanford, conducting research in wireless network architectures, the Internet infrastructure, packet switching, network management and information service engineering, engaged in various projects of his Network Architecture Laboratory (NetLab). His current technology research interests include high-performance networking, autonomic computing, and service engineering. His methodological interests are in network control, online task scheduling, queueing systems and stochastic processing networks.

    He has graduated over 20 Ph.D. students, who are now at leadership positions in academia (Stanford, CalTech, Michigan, GaTech, NYU, UBC, etc.) and the information technology industry (Cisco, Broadcom, IBM Labs, Qualcomm, Nokia, MITRE, Sun Labs, ST Micro, Intel, Samsung, TI, etc.) or have become successful entrepreneurs. From 1999 to 2005 he served as the director of the Stanford Networking Research Center, a major partnership/consortium between Stanford and information technology industries, involving tens of corporate members, faculty and doctoral students. He is now heading a new research initiative at Stanford on Networked Information Service Engineering.

    He is on the Editorial Boards of several research journals and serves on various international technical committees and review panels for networking research and information technologies. He has been serving on the boards of various start-up companies in the Silicon Valley, consults on high technology development and management matters, and has served as lead expert witness in high-profile patent litigation cases in networking and computing.

  • Mohsen Bayati

    Mohsen Bayati

    Associate Professor of Operations, Information and Technology at the Graduate School of Business and, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests1) Healthcare management: I am interested in improving healthcare delivery using data-driven modeling and decision-making.

    2) Network models and message-passing algorithms: I work on graphical modeling ideas motivated from statistical physics and their applications in statistical inference.

    3) Personalized decision-making: I work on machine learning and statistical challenges of personalized decision-making. The problems that I have worked on are primarily motivated by healthcare applications.

  • Stacey Bent

    Stacey Bent

    Vice Provost for Graduate Education and Postdoctoral Affairs, Jagdeep and Roshni Singh Professor in the School of Engineering, and Professor, by courtesy, of Materials Science & Engineering, of Electrical Engineering and of Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Kwabena Boahen

    Kwabena Boahen

    Professor of Bioengineering, of Electrical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsLarge-scale models of sensory, perceptual and motor systems

  • Dan Boneh

    Dan Boneh

    Cryptography Professor, Professor of Electrical Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies

    BioProfessor Boneh heads the applied cryptography group and co-direct the computer security lab. Professor Boneh's research focuses on applications of cryptography to computer security. His work includes cryptosystems with novel properties, web security, security for mobile devices, and cryptanalysis. He is the author of over a hundred publications in the field and is a Packard and Alfred P. Sloan fellow. He is a recipient of the 2014 ACM prize and the 2013 Godel prize. In 2011 Dr. Boneh received the Ishii award for industry education innovation. Professor Boneh received his Ph.D from Princeton University and joined Stanford in 1997.

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering and Professor, by courtesy, of Computer Science and of Management Science and Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    Professor Boyd has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. He is a Fellow of the IEEE, SIAM, and INFORMS, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education, with citation: “For excellence in classroom teaching, textbook and monograph preparation, and undergraduate and graduate mentoring of students in the area of systems, control, and optimization.” In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair in Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • E.J. Chichilnisky

    E.J. Chichilnisky

    John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsFunctional circuitry of the retina and design of retinal prostheses

  • Srabanti Chowdhury

    Srabanti Chowdhury

    Associate Professor of Electrical Engineering and Center Fellow, by courtesy, at the Precourt Institute for Energy

    Current Research and Scholarly InterestsWide bandap materials & devices for RF, Power and energy efficient electronics

  • John M. Cioffi

    John M. Cioffi

    Hitachi America Professor in the School of Engineering, Emeritus

    BioJohn M. Cioffi taught Stanford's graduate electrical engineering course sequence in digital communications for over 20 years from 1986 to 2008, when he retired to emeritus. Cioffi's research interests were in the theory of transmitting the highest possible data rates on a number of different communications channels, many of which efforts were spun out of Stanford through he and/or his many former PhD students to companies, most notably including the basic designed used worldwide on more than 500 million DSL connections. Cioffi also over saw the prototype developments for the worlds first cable modem and digital-audio broadcast system. Cioffi pioneering the use of remote management algorithms to improve (over the internet or cloud) both wireline (DSL) and wireless (Wi-Fi) physical-layer transmission performance, an area often known as Dynamic Spectrum Management or Dynamic Line Management. Cioffi was co-inventer on basic patents for vectored DSL transmission and optimized MIMO wireless transmission. In his early career, Cioffi developed the worlds first full-duplex voiceband data modem while at Bell Laboratories, and the worlds first adaptively equalized disk read channel while at IBM. His courses and research projects over the years centered on these areas.

  • Sigrid Close

    Sigrid Close

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioProf. Close's research involves space weather detection and modeling for improved spacecraft designs, and advanced signal processing and electromagnetic wave interactions with plasma for ground-to-satellite communication systems. These topics fall under the Space Situational Awareness (SSA) umbrella that include environmental remote sensing using satellite systems and ground-based radar. Her current efforts are the MEDUSSA (Meteoroid, Energetics, and Debris Understanding for Space Situational Awareness) program, which uses dust accelerators to understand the effects of hypervelocity particle impacts on spacecraft along with Particle-In-Cell simulations, and using ground-based radars to characterize the space debris and meteoroid population remotely. She also has active programs in hypersonic plasmas associated with re-entry vehicles.

  • Daniel Norbert Congreve

    Daniel Norbert Congreve

    Assistant Professor of Electrical Engineering

    BioDan Congreve received his B.S. and M.S. from Iowa State in 2011, working with Vik Dalal studying defect densities of nano-crystalline and amorphous silicon. He received his PhD from MIT in 2015, studying under Marc Baldo. His thesis work focused on photonic energy conversion using singlet fission and triplet fusion as a downconverting and upconverting process, respectively. He joined the Rowland Institute at Harvard University in August 2016, where his current research efforts focus on controlling light and energy at the nanoscale. He will start as an Assistant Professor of Electrical Engineering at Stanford in Fall 2020.

  • Adam de la Zerda

    Adam de la Zerda

    Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering
    On Leave from 09/10/2020 To 09/09/2021

    Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo

  • John Duchi

    John Duchi

    Assistant Professor of Statistics and of Electrical Engineering

    Current Research and Scholarly InterestsMy work spans statistical learning, optimization, information theory, and computation, with a few driving goals: 1. To discover statistical learning procedures that optimally trade between real-world resources while maintaining statistical efficiency. 2. To build efficient large-scale optimization methods that move beyond bespoke solutions to methods that robustly work. 3. To develop tools to assess and guarantee the validity of---and confidence we should have in---machine-learned systems.

  • Robert Dutton

    Robert Dutton

    Robert and Barbara Kleist Professor in the School of Engineering, Emeritus

    BioDutton's group develops and applies computer aids to process modeling and device analysis. His circuit design activities emphasize layout-related issues of parameter extraction and electrical behavior for devices that affect system performance. Activities include primarily silicon technology modeling both for digital and analog circuits, including OE/RF applications. New emerging area now includes bio-sensors and the development of computer-aided bio-sensor design.

  • Abbas El Gamal

    Abbas El Gamal

    Hitachi America Professor in the School of Engineering

    BioAbbas El Gamal is the Hitachi America Professor in the School of Engineering and Professor in the Department of Electrical Engineering at Stanford University. He received his B.Sc. Honors degree from Cairo University in 1972, and his M.S. in Statistics and Ph.D. in Electrical Engineering both from Stanford University in 1977 and 1978, respectively. From 1978 to 1980, he was an Assistant Professor of Electrical Engineering at USC. From 2003 to 2012, he was the Director of the Information Systems Laboratory at Stanford University. From 2012 to 2017 he was Chair of the Department of Electrical Engineering at Stanford University. His research contributions have been in network information theory, FPGAs, and digital imaging devices and systems. He has authored or coauthored over 230 papers and holds 35 patents in these areas. He is coauthor of the book Network Information Theory (Cambridge Press 2011). He has received several honors and awards for his research contributions, including the 2016 Richard W. Hamming Medal, the 2012 Claude E. Shannon Award, and the 2004 INFOCOM Paper Award. He is a member of the U.S. National Academy of Engineering and a Fellow of the IEEE. He has co-founded and served on the board of directors and advisory boards of several semiconductor and biotechnology startup companies.

  • Dawson Engler

    Dawson Engler

    Associate Professor of Computer Science and of Electrical Engineering

    BioEngler's research focuses both on building interesting software systems and on discovering and exploring the underlying principles of all systems.

  • Jonathan Fan

    Jonathan Fan

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.

  • Shanhui Fan

    Shanhui Fan

    Director, Edward L. Ginzton Laboratory, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Applied Physics

    BioFan's research involves the theory and simulations of photonic and solid-state materials and devices; photonic crystals; nano-scale photonic devices and plasmonics; quantum optics; computational electromagnetics; parallel scientific computing.

  • Chelsea Finn

    Chelsea Finn

    Assistant Professor of Computer Science and of Electrical Engineering

    BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected experience, and meta-learning algorithms that can enable fast learning of new concepts and behaviors.
    Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, an NSF graduate fellowship, a Facebook fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.


  • Antony Fraser-Smith

    Antony Fraser-Smith

    Professor (Research) of Electrical Engineering and of Geophysics, Emeritus

    BioFraser-Smith's research focuses on the use of low frequency electromagnetic fields, both as a means of probing (1) the interior of the earth, and (2) the space environment near the earth, as well as for communicating with, and detecting, objects submerged in the sea or buried in the earth, and for detecting changes taking place in the Earth and the near-Earth space environment.

  • Grace X. Gao

    Grace X. Gao

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioGrace Xingxin Gao is an assistant professor in the Department of Aeronautics and Astronautics at Stanford University. She leads the Navigation and Autonomous Vehicles Laboratory (NAV Lab). Before joining Stanford University, she was faculty at University of Illinois at Urbana-Champaign. She obtained her Ph.D. degree at Stanford University. Her research is on robust and secure perception, localization and navigation with applications to manned and unmanned aerial vehicles, autonomous driving cars, robotics and internet of things.

    Prof. Gao has won a number of awards, including the NSF CAREER Award, the Institute of Navigation Early Achievement Award and the RTCA William E. Jackson Award. She received the Distinguished Promotion Award from University of Illinois at Urbana-Champaign. She has won Best Paper/Presentation of the Session Awards 14 times at ION GNSS+ conferences. She received the Dean's Award for Excellence in Research from the College of Engineering, University of Illinois. For her teaching, Prof. Gao has been on the List of Teachers Ranked as Excellent by Their Students at University of Illinois multiple times. She won the College of Engineering Everitt Award for Teaching Excellence, the Engineering Council Award for Excellence in Advising, and AIAA Illinois Chapter’s Teacher of the Year.

  • James F Gibbons

    James F Gibbons

    Professor (Research) of Electrical Engineering, Emeritus

    BioA pioneer in the use of ion implantation and rapid thermal process techniques for solid-state physics, Gibbons also conducts research into semiconductor device analysis, fabrication, and process physics. Current research is focused on the growth and processing of thin semiconductor films and nanostructures that offer potential for advanced semiconductor and optical device development.

  • John Gill

    John Gill

    Associate Professor of Electrical Engineering, Emeritus

    BioGill's research interests are in the areas of computational complexity theory and information theory, including probabilistic computation, lossless data compression, and error correcting codes.

  • Bernd Girod

    Bernd Girod

    Robert L. and Audrey S. Hancock Professor in the School of Engineering

    Current Research and Scholarly InterestsGirod's research focuses on algorithms and systems for multimedia analysis and communication. Applications range from wireless media delivery to interactive video streaming to mobile visual search and augmented reality.

  • Gary Glover

    Gary Glover

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering

    Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.

  • Peter Glynn

    Peter Glynn

    Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance

  • Andrea Goldsmith

    Andrea Goldsmith

    Stephen Harris Professor in the School of Engineering, Emerita

    BioAndrea Goldsmith is the Stephen Harris professor in the School of Engineering and professor of Electrical Engineering at Stanford University. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and neuroscience. She co-founded and served as Chief Technical Officer and Board member of Plume WiFi and of Quantenna (QTNA), and she currently serves on the Board of Directors for Medtronic (MDT) and Crown Castle Inc. (CCI). She has also been a member or chair of the technical advisory boards for Quantenna (QTNA), Sequans (SQNS), Interdigital (IDCC) and Cohere. Goldsmith has launched and led several multi-university research projects including DARPA’s ITMANET program, and she is currently a Principle Investigator in the NSF Center on the Science of Information. Prior to Stanford she held positions at Caltech, Maxim Technologies, Memorylink Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a member of the National Academy of Engineering and the American Academy of Arts and Sciences, a Fellow of the IEEE and of Stanford, and has received several awards for her work, including the IEEE Eric E. Sumner Technical Field Award in Communications Technology, the ComSoc Edwin H. Armstrong Achievement Award as well as Technical Achievement Awards in Communications Theory and in Wireless Communications, the National Academy of Engineering Gilbreth Lecture Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications'' and “Principles of Cognitive Radio,” all published by Cambridge University Press, as well as an inventor on 29 patents. She has served in various leadership roles in the IEEE and in industrial groups aimed at diversifying STEM fields, and is currently the founding chair of the IEEE Committee on Diversity, Inclusion, and Professional Ethics. At Stanford she has served as chair and a member of the Faculty Senate and on the Planning and Policy Board, Committee on Research, Commissions on Graduate Education and on Undergraduate Education, Task Force on Women and Leadership, and the Faculty Women's Forum Steering Committee. She currently serves on Stanford's Budget Group, Advisory Board, and in the Faculty Senate.

  • Robert M Gray

    Robert M Gray

    Alcatel-Lucent Professor in Communications and Networking, Emeritus

    Current Research and Scholarly InterestsMy current research falls in the intersection of Shannon information theory and signal processing. In particular, I am interested in the theory and design of block codes and sliding-block (or stationary or time-invariant) codes for data compression and their relation to each other. Block codes are far better understood and more widely used, but their lack of stationarity causes difficulties in theory and artifacts in practice. Very little is known about the design of good sliding-block codes, but the problem is known to be equivalent to the design of entropy-constrained simulators of complex random processes. I also do research in the history of information theory and signal processing, especially in the development of speech processing systems and real time signal processing.

  • Leonidas Guibas

    Leonidas Guibas

    Paul Pigott Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsGeometric and topological data analysis and machine learning. Algorithms for the joint analysis of collections of images, 3D models, or trajectories. 3D reconstruction.

  • Pat Hanrahan

    Pat Hanrahan

    Canon USA Professor in the School of Engineering and Professor of Electrical Engineering

    BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.

  • Brian A. Hargreaves

    Brian A. Hargreaves

    Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsI am interested in magnetic resonance imaging (MRI) applications and augmented reality applications in medicine. These include abdominal, breast and musculoskeletal imaging, which require development of faster, quantitative, and more efficient MRI methods that provide improved diagnostic contrast compared with current methods. My work includes novel excitation schemes, efficient imaging methods and reconstruction tools and augmented reality in medicine.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Stephen E. Harris

    Stephen E. Harris

    Kenneth and Barbara Oshman Professor in the School of Engineering and Professor of Applied Physics, Emeritus

    BioHarris' interests include lasers, quantum electronics, atomic physics, and nonlinear optics.

  • Tony Heinz

    Tony Heinz

    Professor of Applied Physics and of Photon Science and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsElectronic properties and dynamics of nanoscale materials, ultrafast lasers and spectroscopy.

  • Martin Hellman

    Martin Hellman

    Professor of Electrical Engineering, Emeritus

    BioMartin E. Hellman is Professor Emeritus of Electrical Engineering at Stanford University and is affiliated with the university's Center for International Security and Cooperation (CISAC). His most recent work, "Rethinking National Security," identifies a number of questionable assumptions that are largely taken as axiomatic truths. A key part of that work brings a risk informed framework to a potential failure of nuclear deterrence and then finds surprising ways to reduce the risk. His earlier work included co-inventing public key cryptography, the technology that underlies the secure portion of the Internet. His many honors include election to the National Academy of Engineering and receiving (jointly with his colleague Whit Diffie) the million dollar ACM Turing Award, the top prize in computer science. In 2016, he and his wife of fifty years published "A New Map for Relationships: Creating True Love at Home & Peace on the Planet," providing a “unified field theory” for peace by illuminating the connections between nuclear war, conventional war, interpersonal war, and war within our own psyches.

  • John Hennessy

    John Hennessy

    President Emeritus, Shriram Family Director of the Knight-Hennessy Scholars Program and Professor of Electrical Engineering and of Computer Science

    BioJohn L. Hennessy joined Stanford’s faculty in 1977 as an assistant professor of electrical engineering. He rose through the academic ranks to full professorship in 1986 and was the inaugural Willard R. and Inez Kerr Bell Professor of Electrical Engineering and Computer Science from 1987 to 2004.

    From 1983 to 1993, Dr. Hennessy was director of the Computer Systems Laboratory, a research and teaching center operated by the Departments of Electrical Engineering and Computer Science that fosters research in computer systems design. He served as chair of computer science from 1994 to 1996 and, in 1996, was named dean of the School of Engineering. As dean, he launched a five-year plan that laid the groundwork for new activities in bioengineering and biomedical engineering. In 1999, he was named provost, the university’s chief academic and financial officer. As provost, he continued his efforts to foster interdisciplinary activities in the biosciences and bioengineering and oversaw improvements in faculty and staff compensation. In October 2000, he was inaugurated as Stanford University’s 10th president, a position he held until 2016. In 2016, he cofounded the Knight-Hennessy Scholars Program, which provides scholarships and leadership development for a global community of scholars enrolled in graduate programs at Stanford. The program admitted it's first class in 2018 and will provide full scholarships for up to 100 100 students every year.

    A pioneer in computer architecture, in 1981 Dr. Hennessy drew together researchers to focus on a computer architecture known as RISC (Reduced Instruction Set Computer), a technology that has revolutionized the computer industry by increasing performance while reducing costs. In addition to his role in the basic research, Dr. Hennessy helped transfer this technology to industry. In 1984, he cofounded MIPS Computer Systems, now MIPS Technologies, which designs microprocessors. In recent years, his research has focused on the architecture of high-performance computers.

    Dr. Hennessy is a recipient of the 2000 IEEE John von Neumann Medal, the 2000 ASEE Benjamin Garver Lamme Award, the 2001 ACM Eckert-Mauchly Award, the 2001 Seymour Cray Computer Engineering Award, a 2004 NEC C&C Prize for lifetime achievement in computer science and engineering, a 2005 Founders Award from the American Academy of Arts and Sciences and the 2012 IEEE Medal of Honor, IEEE's highest award. He is a member of the National Academy of Engineering and the National Academy of Sciences, and he is a fellow of the American Academy of Arts and Sciences, the Association for Computing Machinery, and the Institute of Electrical and Electronics Engineers.

    He has lectured and published widely and is the co-author of two internationally used undergraduate and graduate textbooks on computer architecture design. Dr. Hennessy earned his bachelor’s degree in electrical engineering from Villanova University and his master’s and doctoral degrees in computer science from the State University of New York at Stony Brook.

  • Lambertus Hesselink

    Lambertus Hesselink

    Professor of Electrical Engineering and, by courtesy, of Applied Physics

    BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.