School of Engineering
Showing 201-300 of 559 Results
-
KC Huang
Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsHow do cells determine their shape and grow?
How do molecules inside cells get to the right place at the right time?
Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations. -
Possu Huang
Assistant Professor of Bioengineering
Current Research and Scholarly InterestsProtein design: molecular engineering, method development and novel therapeutics
-
Michael Christopher Jewett
Professor of Bioengineering
BioMichael Jewett is a Professor of Bioengineering at Stanford University. He received his B.S. from UCLA and PhD from Stanford University, both in Chemical Engineering. He completed postdoctoral studies at the Center for Microbial Biotechnology in Denmark and the Harvard Medical School. Jewett was also a guest professor at the Swiss Federal Institute of Technology (ETH Zurich). His research group focuses on advancing synthetic biology research to support planet and societal health, with applications in medicine, manufacturing, sustainability, and education.
-
Arielle Johnson
Postdoctoral Scholar, Bioengineering
BioArielle has a BA in Biology from Brown University in Providence, RI. She received a PhD in Plant Biology from Cornell University in Ithaca, NY studying genomics, reproductive development, and specialized defensive cells in the emerging model plant petty spurge (Euphorbia peplus). Arielle is interested in the spatial and developmental aspects of how plants make specialized metabolites and coordinate defense. She hopes to use synbio techniques to manipulate defensive cells in Arabidopsis. Her favorite plants include bladderworts, Hydnora, and honey locust trees.
-
Amit Kaushal
Adjunct Professor, Bioengineering
BioAmit Kaushal, MD, PhD is Clinical Associate Professor of Medicine (Stanford-VA) and Adjunct Professor of Bioengineering at Stanford University. Dr. Kaushal's work spans clinical medicine, teaching, research, and industry.
He helped launch Stanford School of Engineering's undergraduate major in Biomedical Computation (bmc.stanford.edu) and has served as long-time director of the major. The major has graduated over 70 students since inception and was recently featured in Nature (https://go.nature.com/2P2UnRu).
His research interests are in utilizing health data in novel and ethical ways to improve the practice of medicine. He is a faculty executive member of Stanford's Partnership for AI-Assisted Care (aicare.stanford.edu). Recently, he has also been working with public health agencies to improve scale and speed of contact tracing for COVID-19.
He has previously held executive and advisory roles at startups working at the interface of technology and healthcare.
He continues to practice as an academic hospitalist.
Dr. Kaushal completed his BS (Biomedical Computation), MD, PhD (Biomedical Informatics), and residency training at Stanford. He is board-certified in Internal Medicine and Clinical Informatics. -
Julie Kolesar
Research Engineer
BioJulie Kolesar is a Research Engineer in the Human Performance Lab, supporting teaching and interdisciplinary research at the crossroads of engineering, sports medicine, and athletics. Her work aims to understand the underlying mechanisms relating biomechanical changes with function and quality of life for individuals with musculoskeletal disorders and injuries. As part of the Wu Tsai Human Performance Alliance, Dr. Kolesar engages in collaborations which seek to optimize human health and performance across the lifespan. Her expertise and research interests include experimental gait analysis, musculoskeletal modeling and simulation, and clinical interventions and rehabilitation.
-
Ellen Kuhl
Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation
-
Phillip Kyriakakis
Sr Res Scientist-Basic Life
BioPhillip Kyriakakis, Ph.D. is a Senior Research Scientist in the Bioengineering Department at Stanford University in the Wu Tsai Institute for Neuroscience. Dr. Kyriakakis did his undergraduate work in Biochemistry at UMass Boston, where he also worked in Dr. Alexey Veraksa's developmental biology lab and started to develop PhyB optogenetics in animal cells (2008). Dr. Kyriakakis continued his education at UC San Diego in the Division of Biological Sciences. There, he studied cellular programming and metabolism to obtain his degree with a specialization in Multiscale Biology. Dr. Kyriakakis did his postdoctoral work in the Bioengineering Department at UC San Diego with Todd Coleman, continuing the development of optogenetic tools and related technologies. In 2021 Dr. Kyriakakis moved to his Senior Research Scientist role at Stanford University in the Bioengineering Department at the Wu Tsai Institute for Neurosciences.
-
Trang Le
Ph.D. Student in Bioengineering, admitted Spring 2022
BioMy PhD mainly focuses on modelling and analyzing spatial patterns of proteins in fluorescent images from a single cell perspective. Furthermore, I build web-based tools for annotation and interactive model training on biomedical images.
-
Jin Hyung Lee
Associate Professor of Neurology and Neurological Sciences (Neurology Research), of Neurosurgery and of Bioengineering and, by courtesy, of Electrical Engineering
On Leave from 09/23/2024 To 12/22/2024Current Research and Scholarly InterestsIn vivo visualization and control of neural circuits
-
Marlys LeSene
Program Director, Communications & Initiatives, Bioengineering
Current Role at StanfordProgram Director, Communications & Initiatives
-
Craig Levin
Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering
Current Research and Scholarly InterestsMolecular Imaging Instrumentation
Laboratory
Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects. -
Ethan Li
Ph.D. Student in Bioengineering, admitted Autumn 2018
BioI'm a final-year Bioengineering PhD candidate in Manu Prakash's lab. I work on projects to develop open platforms and tools for global health and frugal science. My practical work combines development and bring-up of new software, electronic, and mechanical systems; engineering design; open-source software maintenance; and field research.
-
Michael Lin
Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology
On Partial Leave from 07/01/2024 To 12/31/2024Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.
-
Joshua Makower
Yock Family Professor and Professor of Bioengineering
Current Research and Scholarly InterestsDr. Josh Makower is the Boston Scientific Applied Bioengineering Professor of Medicine and of Bioengineering at the Stanford University Schools of Medicine and Engineering and the Director of the Stanford Byers Center for Biodesign, the program he co-founded with Dr. Paul Yock twenty years ago. Josh helped create the fundamental structure of the Center’s core curriculum and is the chief architect of what is now called “The Biodesign Process.” Over the past 20 years since Josh and Paul founded Biodesign, this curriculum and the associated textbook has been used at Stanford and across the world to train hundreds of thousands of students, faculty and industry leaders on the Biodesign process towards the advancement of medical innovation for the improvement of patient care. Josh has practiced these same techniques directly as the Founder & Executive Chairman of ExploraMed, a medical device incubator, creating 9 companies since 1995. Transactions from the ExploraMed portfolio include NeoTract, acquired by Teleflex, Acclarent, acquired by J&J, EndoMatrix, acquired by C.R. Bard & TransVascular, acquired by Medtronic. Other ExploraMed/NEA ventures include Moximed, NC8 and Willow. Josh is also a Special Partner at NEA where he supports the healthcare team and medtech/healthtech investing practice. Josh serves on the boards of Allay Therapeutics, Revelle Aesthetics, Setpoint Medical, DOTS Technologies, Eargo, ExploraMed, Intrinsic Therapeutics, Moximed, Willow and Coravin. Josh holds over 300 patents and patent applications. He received an MBA from Columbia University, an MD from the NYU School of Medicine, a bachelor’s degree in Mechanical Engineering from MIT. Josh is a Member of the National Academy of Engineering and the College of Fellows of The American Institute for Medical and Biological Engineering and was awarded the Coulter Award for Healthcare Innovation by the Biomedical Engineering Society in 2018.
-
Mariya Mardamshina
Postdoctoral Scholar, Bioengineering
BioMariya Mardamshina, MD, PhD, is a postdoctoral fellow in the Department of Bioengineering, working in Prof. Emma Lundberg's lab. She earned her medical degree from Semey State Medical University and completed her PhD at Tel Aviv University, where her research focused on spatial inter- and intratumoral heterogeneity in breast cancer using mass spectrometry-based proteomics. Currently, her work in the Lundberg lab centers on deciphering cell-to-cell proteomic variability within a spatial framework. Her research involves developing integrated pipelines that combine automated multiplexed staining, high-resolution microscopy, artificial intelligence, and ultra-high sensitivity mass spectrometry to achieve comprehensive proteomic analyses.