School of Medicine
Showing 11,751-11,800 of 12,812 Results
-
Soichi Wakatsuki
Professor of Photon Science and of Structural Biology
Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.
Protein self-assembly processes and applications.
The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.
Multiscale imaging and technology developments.
Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators. -
Diane Elizabeth Wakeham
Clinical Research Coordinator Associate, Psych/General Psychiatry and Psychology (Adult)
Current Role at StanfordClinical Research Coordinator Associate, INSPIRE Clinic, Psychiatry and Behavioral Sciences
-
Heather Wakelee
Professor of Medicine (Oncology)
Current Research and Scholarly InterestsDr. Wakelee's research is focused on clinical trials and translational efforts in patients with lung cancer and other thoracic malignancies such as thymoma and thymic carcinoma. Other interests include translation projects in thoracic malignancies and collaborations with population scientists regarding lung cancer questions.
-
Shai Waldrip
Postdoctoral Scholar, Biomedical Informatics
BioDr. Waldrip is a Propel Postdoctoral Scholar in the Boussard lab. As a biomedical informatician-in-training, she is currently focusing on using an interdisciplinary approach, consisting of the use of multimodal data (e.g., electronic health records, socioeconomic, and psychosocial data) and machine learning approaches, to facilitate in the creation of a digital twin for breast cancer patients. She will also create a framework to evaluate bias and fairness of the algorithms as well as their clinical feasibility and utility. Her goal is to ultimately improve evidence-based clinical decision-making and patient-centered care. Her research interests include biomedical informatics, precision oncology (i.e., breast cancer), health equity, and bias mitigation.
-
Kim Walker
Academic Prog Prof 3, Technology & Digital Solutions
Current Role at StanfordKim is Manager of the Instructional Design and Production group (EdTech) in the School of Medicine at Stanford University. She consults with SoM faculty to design and develop online, hybrid, and face-to-face courses for undergraduate, graduate and continuing medical education. Kim holds a Ph.D. and M.Ed. in Curriculum and Instruction with an emphasis in Instructional Design and Science Education from the University of South Florida. Her undergraduate degree is in biology from the University of Colorado. She formerly worked at Stanford Hospital as a Program Manager and Education Specialist in Graduate Medical Education.
-
Rebecca D. Walker
Clinical Associate Professor, Emergency Medicine
Current Research and Scholarly InterestsInterests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration
-
Dennis Wall
Professor of Pediatrics (Clinical Informatics), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease
-
James Wall
Associate Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering
On Partial Leave from 07/01/2023 To 06/30/2024Current Research and Scholarly InterestsHealth Technology Innovation
-
Jessica Falco-Walter
Clinical Associate Professor, Neurology & Neurological Sciences
BioJessica Falco-Walter, MD is board certified in Neurology as well as in Epilepsy and Clinical Neurophysiology and practices as a Clinical Assistant Professor of Neurology & Neurological Sciences at Stanford University. Dr. Walter received her BA in Cognitive Science with distinction from Yale University. She received her MD and completed her internship at Georgetown University School of Medicine and then completed her neurology residency at the Mount Sinai Medical Center of the Icahn School of Medicine. She then went on to pursue fellowship in Clinical Neurophysiology and Epilepsy at Rush University Medical Center, in Chicago, IL. She is board certified by the ABPN in Neurology, Clinical Neurophysiology, and Epilepsy. She was one of the first ABPN Epilepsy fellows in the country. Her clinical focus is diagnosis and treatment of seizure disorders and epilepsy, with commitment to treating complex patients and improving quality of life as well as seizure control.
She has a particular interest in dietary treatments for epilepsy and has created a clinic to better manage ketogenic diet treatments for adults with epilepsy. She has published research on ketogenic dietary treatments and continues to work on research related to Vitamin D and epilepsy. While she has particular interest in dietary treatments in epilepsy she is well versed in all currently available medications and surgical treatments for epilepsy and works with patients to treat epilepsy medically, surgically, and wholistically. She is involved in research on new treatments for epilepsy as well.
Dr. Falco-Walter is the Students Interested in Neurology (SIGN) faculty lead for the Department of Neurology and really enjoys working with undergraduates and medical students at the beginning of their careers. She is the course instructor for the Introduction to Neurology Seminar that runs in the fall for medical students that introduces students to all the subspecialty areas within Neurology. -
Shannon Walters
Executive Technical Director, Radiology - Diagnostic Radiology
Current Role at StanfordI consider myself an innovation enabler and workflow optimization enthusiast. At Stanford 3D and Quantitative Imaging Lab, I work closely with healthcare providers, researchers, and educators to enable effective health visualization. Recent innovations are of particular interest to me; such as 3D Printing, immersive volumetric visualization, clinical implementation of validated AI algorithms, and the general concept of reporting concise changes over time.
-
Brian A. Wandell
Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education
Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.
-
Tom Wandless
Professor of Chemical and Systems Biology and, by courtesy, of Chemistry
Current Research and Scholarly InterestsWe employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.
-
Adam Wang
Assistant Professor of Radiology and, by courtesy, of Electrical Engineering
BioMy research group develops technologies for advanced x-ray and CT imaging, including artificial intelligence for CT acquisition, reconstruction, and image processing; spectral imaging, including photon counting CT (PCCT) and dual-layer flat-panel detectors; novel system and detector designs; and their applications in diagnostic imaging and image-guided procedures. I am also the Director of the Photon Counting CT Lab, Zeego Lab, and Tabletop X-Ray Lab.
I completed my PhD in Electrical Engineering at Stanford, developing strategies for maximizing the information content of dual energy CT and photon counting detectors. I then pursued a postdoctoral fellowship at Johns Hopkins in the I-STAR Lab, developing reconstruction and registration methods for x-ray based image-guided surgery. I was then a Senior Scientist at Varian Medical Systems, developing x-ray/CT methods for image-guided radiation therapy, before returning to Stanford in 2018, where I now lead a comprehensive research program in advanced x-ray and CT imaging systems and methods, with funding from NIH, DOD, DOE, and industry partners. -
Bing Wang
Postdoctoral Scholar, Stem Cell Transplantation
BioMy academic training and research experience have equipped me with multidisciplinary skills and knowledge of molecular biology and immunology.
I led two projects when I was an undergraduate, in which I got primary academic learning. My team member and I investigated the bacteria content in drinking water from two types of machines that are commonly used in colleges under the guidance of our experimental microbiology teacher Zhihong Zhong. Secondly, we produced a hybridoma cell line secreting monoclonal antibody against the core antigen of the hepatitis C virus (HCV) to develop an ELISA kit for the detection of HCV under the guidance of Dr. Rushi Liu and Minjing Liao.
Thereafter, as a Ph. D. candidate at Xiaoming Feng’s lab, my research primarily focused on understanding the biology of regulatory T cells (Treg) and CD11c+ myeloid cells using cutting-edge single-cell sequencing and conditional knockout mice under healthy and disease conditions. We first revealed the heterogeneity and bifurcated differentiation pathway of human Tregs from normal donors and transplanted patients at the single-cell transcriptome level. A subsequent first and corresponding author publication identified a key innate responsive protein in CD11c+ alveolar macrophages, NRP2, that protects mice from lung injury via promoting the phagocytosis of neutrophils. I also participated in two projects regarding the role of a serine/threonine kinase, LKB1, in mice CD11c+ dendritic cells from lymphoid tissues and adipose tissue with diet-induced obesity. These academic experiences guided me into a strong passion and independent capacities for biomedical studies.
For my postdoctoral training, I will focus on developing Treg therapies and genetic stem cell therapy to cure patients with IPEX syndrome (a severe autoimmune disease) at preclinical and clinical stages, and other immune disorders. My sponsor Dr. Rosa Bacchetta is a well-known leader in treating IPEX patients and developing Treg therapies. My co-mentor Dr. Maria Grazia Roncarolo is a well-recognized pediatric immunologist and also one of the pioneers in the stem cell and gene therapy field, who discovered the type 1 regulatory T cells or Tr1 cells and translate the scientific discoveries into novel Treg therapies. Both of them have an excellent record of training postdoctoral fellows. The proposed projects will provide me with great opportunities in cutting-edge technology and translational research and outline a set of career development including grant writing, public presentation, and lab management, which will enhance my ability to become an independent investigator and help me to reach my goal of developing efficient and safe Treg therapies for a wide range of immune disorders and associated human diseases. -
Bo Wang
Assistant Professor of Bioengineering and, by courtesy, Developmental Biology
Current Research and Scholarly InterestsResearch interests:
(1) Systems biology of whole-body regeneration
(2) Cell type evolution through the lens of single-cell multiomic sequencing analysis
(3) Quantitative biology of brain regeneration
(4) Regeneration of animal-algal photosymbiotic systems -
C. Jason Wang, MD, PhD
LCY: Tan Lan Lee Professor and Professor of Pediatrics (General Pediatrics) and of Health Policy
BioDr. Wang is the Director of Center for Policy, Outcomes and Prevention. Prior to coming to Stanford in 2011, he was a faculty member at Boston University Schools of Medicine and Public Health. His other professional experiences include working as a management consultant with McKinsey and Company and serving as the project manager for Taiwan's National Health Insurance Reform Task-force. His current interests include: 1) COVID-19 related policies; 2) developing tools for assessing and improving the value of healthcare; 3) facilitating the use of mobile technology in improving quality of care; 4) supporting competency-based medical education curriculum, and 5) engaging in healthcare delivery and payment reforms.