Stanford University
Showing 101-200 of 278 Results
-
Ngan F. Huang
Associate Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsDr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.
-
Thomas Jaramillo
Professor of Chemical Engineering, of Energy Science Engineering, of Photon Science and Senior Fellow at the Precourt Institute for Energy
BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.
-
Michael Christopher Jewett
Professor of Bioengineering and, by courtesy, of Chemical Engineering
BioMichael Jewett is a Professor of Bioengineering at Stanford University. He received his B.S. from UCLA and PhD from Stanford University, both in Chemical Engineering. He completed postdoctoral studies at the Center for Microbial Biotechnology in Denmark and the Harvard Medical School. Jewett was also a guest professor at the Swiss Federal Institute of Technology (ETH Zurich). His research group focuses on advancing synthetic biology research to support planet and societal health, with applications in medicine, manufacturing, sustainability, and education.
-
Taigyu Joo
Postdoctoral Scholar, Chemical Engineering
BioTaigyu Joo (TJ) is a postdoctoral researcher in Professor William Tarpeh's group. His research focuses on designing membranes for separating ions and gases from wastewater, with an emphasis on electrochemical separation techniques.
-
Noa Katz
Postdoctoral Scholar, Chemical Engineering
BioNoa Katz is a Stanford Science Fellow and an EMBO and Fulbright postdoctoral scholar at Stanford University. She implements biomolecular gene circuits to study and manipulate the central nervous system to promote therapeutic applications for neural repair and autism.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Sang-Won Lee
Postdoctoral Scholar, Chemical Engineering
BioGoogle scholar profile_https://scholar.google.com/citations?authuser=1&user=MMIaMDkAAAAJ
Linked in profile_https://www.linkedin.com/in/%E2%80%8Dsang-won-lee-918495226/ -
Ricardo B Levy
Adjunct Professor, Chemical Engineering
BioRicardo Levy is an executive and entrepreneur whose career spans more than three decades of founding and building successful businesses. Born and raised in South America to a European immigrant family, he completed engineering studies in the United States at Stanford and Princeton before returning to South America to run a family business. In 1969 he sold the business and returned to the United States to complete his Ph.D. at Stanford in the field of catalytic chemistry. In 1974, after a number of years in the petroleum and petrochemical industry, he co-founded his first entrepreneurial venture, Catalytica, a research and development firm serving the chemical, pharmaceutical, and clean energy industries. The firm’s discoveries resulted in over one hundred patents and led to the formation of three companies, one of which became, under Levy’s leadership, the largest supplier to the pharmaceutical industry in North America and was sold to European firm DSM in 2000. He has served on several public and private Boards, is Lead Director of the Board of a private analytics software company, and serves on the Board of Aquarius Energy, Inc. From 2010 to 2016 served on the Advisory Board of the Santa Clara University Miller Center for Social Entrepreneurship, a global incubator of social entrepreneurs. He continues to be a mentor for that program. He is a Lecturer at the Stanford University Chemical Engineering Department, where he teaches a course on entrepreneurship, leadership and new venture creation. He is the author of the book “Letters to a Young Entrepreneur: Succeeding in Business Without Losing at Life – A Leader’s Ongoing Journey” published in 2015. Throughout his life, Dr. Levy has pursued a keen interest in spirituality and personal growth and his conviction that a person’s inner beliefs and purpose are deeply linked to business success. He has continually applied his diverse studies to his roles as a business leader, mentor and teacher.
-
Kang Rui Garrick Lim
Postdoctoral Scholar, Chemical Engineering
BioI am a materials chemist from Singapore and a Stanford Energy Postdoctoral Fellow with Prof. Matteo Cargnello and Prof. Thomas Jaramillo. In 2027, I will start as a Nanyang Assistant Professor of Materials Science & Engineering at Nanyang Technological University (NTU) in Singapore. I completed my PhD and Master's degree in chemistry at Harvard under Prof. Joanna Aizenberg, and my Bachelor's degree in chemistry from the National University of Singapore (NUS).
At Stanford (2025-), I work on colloidal catalyst design for CO2 conversion as part of the SUNCAT Center for Interface Science and Catalysis. During my PhD at Harvard (2020-2025), I integrated colloidal templating and self-assembly concepts into catalyst design to design 3D macroporous inverse opal structures incorporating dilute alloy nanoparticles to serve as a model thermocatalytic platform. Previously, at NUS and IMRE A*STAR in Singapore (2019-2020), I synthesized MXene nanohybrids for electrocatalysis and designed core-shell quantum dots for light harvesting. My broader research interest is to leverage on colloidal design of catalytic architectures–their active sites and immediate environment–to bridge the materials gap in catalyst design for low carbon energy research. -
Alam Mahmud
Postdoctoral Scholar, Chemical Engineering
BioA curious individual, seeking truth and exploring wonders, as ever
-
Danielle Mai
Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering
BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).
-
Jade Marcus
Ph.D. Student in Chemical Engineering, admitted Autumn 2023
Current Research and Scholarly InterestsActivating mg-silicates for fertilizer applications to remove CO2 and reduce N2O emissions while increasing crop yields, plant resiliency, and soil health
-
Meagan Mauter
Associate Professor Civil & Environmental Engineering, of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering
BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.
Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.
Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University. -
Conor McClune
Postdoctoral Scholar, Chemical Engineering
BioI develop systematic approaches for studying the plasticity of life at the molecular level, especially the bioactive compounds in plants we consume as food or medicine.
-
Angela McIntyre
Academic Prog Prof 3, Program-Bao Z.
Current Role at StanfordAngela McIntyre is the Executive Director of the Stanford Wearable Electronics (eWEAR) Initiative. She manages the eWEAR affiliates program and provides member companies opportunities to connect with research and events related to wearables at Stanford University. As a primary contact to eWEAR, Angela fosters membership, assists in forming collaborations between industry and faculty, leads eWEAR events, and is an evangelist for wearables research at Stanford.
-
Mohammad Javad Mirshojaeian Hosseini
Postdoctoral Scholar, Chemical Engineering
BioWith over Seven years of experience, my work focuses on designing, fabricating, and characterizing flexible nanostructures and organic neuromorphic circuits. My expertise extends to hands-on experience in ISO 4 cleanrooms and fabrication labs, employing a variety of techniques such as electron beam and thermal PVD, ALD, sputtering, photolithography, CVD, profilometry, and wet chemical processing. I have a strong foundation in advanced materials and technologies, including neuromorphic systems, nanofabrication, biosensors, lab-on-a-chip technologies, printing electronics, and organic nanoelectronics.
Currently, I am a postdoctoral researcher at Stanford University, where I explore stretchable neuromorphic e-skin and flexible electronics, particularly for biopotential monitoring and soft robotics applications. My multidisciplinary expertise enables me to contribute to projects that combine neuromorphic computing, smart materials, and neuroscience. These align with my long-term research goals of advancing neuromorphic systems and developing novel technologies at the interface of artificial intelligence, smart materials, and organic electronics. -
David Myung, MD, PhD
Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
Mesenchymal stem cell therapy for corneal and ocular surface regeneration
Engineered biomolecule therapies for promote corneal wound healing
Telemedicine in ophthalmology -
Luke Neal
Masters Student in Chemical Engineering, admitted Autumn 2025
BioI'm currently a process engineer at Merck working at the Formulation and Laboratory Experimentation Facility with a focus on oral solid dosage production. I recently graduated from Yale University with a Bachelor’s of Science in Chemical Engineering and an Energy Studies certificate. At Yale, I was on the Varsity Men's Tennis team. My internship experiences during undergraduate studies included working as a Process Engineering Intern in ExxonMobil’s Technology and Engineering division. I was focused on modeling the extraction of battery grade lithium from brine. I also gained experience in the renewable energy and green engineering fields though my internships at Tesla and West Environmental.
-
Jake Owens
Masters Student in Chemical Engineering, admitted Spring 2025
Life Science Research Professional 1, Program-Tang, S.Current Role at StanfordLife Science Research Professional in the lab of Sindy Tang
-
Rebecca Pinals
Assistant Professor of Chemical Engineering
BioThe brain is a fascinatingly complex and delicate system of biomolecules, cells, and dynamic interactions that must be carefully maintained to support human health. When this balance is disrupted, disease can arise. Neurodegenerative dementias including Alzheimer’s disease are highly prevalent and profoundly devastating, yet remain largely untreatable or incurable.
The Pinals Lab engineers neuro-models and nano-tools to uncover mechanisms of neurodegenerative disease and intervene to halt—and even reverse—disease progression. A particular emphasis of our work is on the blood–brain barrier (BBB), the vascular interface that serves as the molecular gateway into the brain. We leverage human induced pluripotent stem cells (iPSCs) to build 3D cellular systems, providing a platform to recapitulate human brain properties and pathologies. In parallel, we design nanoparticles to report on real-time neurochemical processes, enabling unprecedented access to dynamic and spatially resolved biomolecular phenomena, and to modulate disease states. By integrating advanced human brain tissue models with rationally designed nanotechnologies, we aim to generate fundamental insights and tools that translate into meaningful impacts for human health. -
Jian Qin
Associate Professor of Chemical Engineering
BioJian Qin is an Associate Professor in the Department of Chemical Engineering at the Stanford University. His research focuses on development of microscopic understanding of structural and physical properties of soft matters by using a combination of analytical theory, scaling argument, numerical computation, and molecular simulation. He worked as a postdoctoral scholar with Juan de Pablo in the Institute for Molecular Engineering at the University of Chicago and with Scott Milner in the Department of Chemical Engineering at the Pennsylvania State University. He received his Ph.D. in the Department of Chemical Engineering and Materials Science at the University of Minnesota under the supervision of David Morse and Frank Bates. His research covers self-assembly of multi-component polymeric systems, molecular origin of entanglement and polymer melt rheology, coacervation of polyelectrolytes, Coulomb interactions in dielectrically heterogeneous electrolytes, and surface charge polarizations in particulate aggregates in the absence or presence of flow.