Stanford University
Showing 501-600 of 1,354 Results
-
Sarah Heilshorn
Director, Geballe Laboratory for Advanced Materials (GLAM), Rickey/Nielsen Professor in the School of Engineering and Professor, by courtesy, of Bioengineering and of Chemical Engineering
Current Research and Scholarly InterestsProtein engineering
Tissue engineering
Regenerative medicine
Biomaterials -
Thomas Heller
Lewis Talbot and Nadine Hearn Shelton Professor of International Legal Studies, Emeritus
BioAn expert in international law and legal institutions, Thomas C. Heller has focused his research on the rule of law, international climate control, global energy use, and the interaction of government and nongovernmental organizations in establishing legal structures in the developing world. He has created innovative courses on the role of law in transitional and developing economies, as well as the comparative study of law in developed economies. He has co-directed the law school’s Rule of Law Program, as well as the Stanford Program in International and Comparative Law. Professor Heller has been a visiting professor at the European University Institute, Catholic University of Louvain, and Hong Kong University, and has served as the deputy director of the Freeman Spogli Institute for International Studies at Stanford University, where he is now a senior fellow.
Professor Heller is also a senior fellow (by courtesy) at the Woods Institute for the Environment. Before joining the Stanford Law School faculty in 1979, he was a professor of law at the University of Wisconsin Law School and an attorney-advisor to the governments of Chile and Colombia. -
Martin Hellman
Professor of Electrical Engineering, Emeritus
BioMartin E. Hellman is Professor Emeritus of Electrical Engineering at Stanford University and is affiliated with the university's Center for International Security and Cooperation (CISAC). His most recent work, "Rethinking National Security," identifies a number of questionable assumptions that are largely taken as axiomatic truths. A key part of that work brings a risk informed framework to a potential failure of nuclear deterrence and then finds surprising ways to reduce the risk. His earlier work included co-inventing public key cryptography, the technology that underlies the secure portion of the Internet. His many honors include election to the National Academy of Engineering and receiving (jointly with his colleague Whit Diffie) the million dollar ACM Turing Award, the top prize in computer science. In 2016, he and his wife of fifty years published "A New Map for Relationships: Creating True Love at Home & Peace on the Planet," providing a “unified field theory” for peace by illuminating the connections between nuclear war, conventional war, interpersonal war, and war within our own psyches.
-
Natalie Herbert
Physical Science Research Scientist
BioNATALIE HERBERT is a Research Scientist in the Department of Earth Systems Science at the Doerr School of Sustainability. Her research investigates decision-making in the face of environmental risk. She completed her Ph.D. in 2020 at the Annenberg School for Communication, where she researched health and science communication with a focus on communicating scientific uncertainty. Natalie was a Christine Mirzayan Science and Technology Policy Graduate Fellow at the National Academies of Sciences, Engineering, and Medicine.
-
Rachel Herring
Ph.D. Student in Environment and Resources, admitted Autumn 2024
BioRachel Herring (Choctaw Nation) is investigating pathways towards a Just Transition as an E-IPER PhD student. Previously, she has recommended policy alternatives for domestic mining with the Department of Energy’s Indian Energy Program, and has explored impacts of critical mineral extraction on Native land as a Kathryn Wasserman Davis Conflict Transformation Fellow. Additionally, as a Fulbright Fellow and National Geographic Explorer, Rachel continues to investigate the intersection between the clean energy transition and the depopulation crisis in rural Japan. She was named a Next Generation Photographer by the 2024 Japan Photo Award in Kyoto, and her work has appeared in the New York Times. She holds an MA in International Environmental Policy from the Middlebury Institute, and a BA from New York University’s Gallatin School of Individualized Study.
-
Susannah Herz
Ph.D. Student in Earth and Planetary Sciences, admitted Autumn 2023
Current Research and Scholarly InterestsI am interested in investigating the impacts of ocean anoxia through the end Permian mass extinction. My work utilizes a variety of isotope geochemistry techniques, including investigations of the sulfur, calcium, and thallium systems through both modeling and lab-based approaches.
-
Mathis Heyer
Ph.D. Student in Energy Science and Engineering, admitted Autumn 2024
BioMathis Heyer, from Kiel, Germany, is pursuing a Ph.D. in Energy Science & Engineering at the Stanford Doerr School of Sustainability. He holds a bachelor’s degree in Mechanical Engineering and a master’s degree in Process Systems Engineering from RWTH Aachen University, Germany, as well as a master’s degree in Management Science and Engineering from Tsinghua University in Beijing.
His research in the Environmental Assessment and Optimization Group at Stanford (https://eao.stanford.edu/) focuses on advancing the understanding of complex energy and process systems through mathematical modeling and optimization. Mathis' work builds on his previous research experiences at the Climate Policy Lab at ETH Zurich and the Sustainable Reaction Engineering Group at Cambridge University. Outside of his academic pursuits, Mathis enjoys volunteering with organizations such as "Engineers Without Borders" and "Europe Meets School" both involved in promoting intercultural exchange.
Mathis has been recognized as a Klaus-Murmann Fellow by the Foundation of German Business (sdw) while at RWTH Aachen and is currently an ERP Fellow with the German Academic Scholarship Foundation and a recipient of the SGF Fellowship. -
Lynn Hildemann
Wayne Loel Professor of Sustainability and Senior Associate Dean for Education
BioLynn Hildemann's current research areas include the sources and dispersion of airborne particulate matter indoors, and assessment of human exposure to air pollutants.
Prof. Hildemann received BS, MS, and PhD degrees in environmental engineering science from the California Institute of Technology. She is an author on >100 peer-reviewed publications, including two with over 1000 citations each, and another 6 with over 500 citations each. She has been honored with Young Investigator Awards from NSF and ONR, the Kenneth T. Whitby Award from the AAAR (1998), and Stanford's Gores Award for Teaching Excellence (2013); she also was a co-recipient of Atmospheric Environment’s Haagen-Smit Outstanding Paper Award (2001).
She has served on advisory committees for the Bay Area Air Quality Management District and for the California Air Resources Board. She has been an Associate Editor for Environmental Science & Technology, and Aerosol Science and Technology, and has served on the advisory board for the journal Environmental Science & Technology.
At Stanford, Prof. Hildemann has been chair of the Department of Civil & Environmental Engineering, and served as an elected member of the Faculty Senate. She has chaired the School of Engineering Library Committee, the University Committee on Judicial Affairs, and the University Breadth Governance Board. -
George Hilley
Professor of Earth and Planetary Sciences
Current Research and Scholarly InterestsActive tectonics, quantitative structural geology and geomorphology; Geographic Information Systems;unsaturated zone gas transport; landscape development;active deformation and mountain belt growth in central Asia, central Andes, and along the San Andreas Fault; integrated investigation of earthquake hazards.
-
Sara (Suki) Hoagland
Lecturer
BioSara (Suki) Hoagland is a Lecturer in the Earth Systems Program of the Stanford Doerr School of Sustainability. She directs the internship program and team-teaches and mentors the undergraduate Capstone Project. She also teaches the Master's Seminar for the Earth Systems MA and MS co-terms. In 2021 she launched the Sustainability in Athletics course with a team of scholar athletes. Recently she also taught the E-IPER first year Research and Design Seminar and team taught “Gender, Land Rights and Climate Change”. Previously, she was the first Executive Director of Stanford University's Interdisciplinary Graduate Program in Environment and Resources, (now E-IPER). She was a Senior Lecturer in that program and in the Stanford Woods Institute for the Environment. She designed and taught courses for E-IPER such as Case Studies in Environmental Problem Solving, Global Environmental Ethics, and Pioneering Sustainable Development in Costa Rica, which included a field seminar there. She also served as the faculty advisor to the Stanford Farm and the Stanford chapter of Engineers for a Sustainable World. She has also been the Faculty Leader for 8 Stanford Alumni Trips to East Africa and Central America.
From 1989 to 2000, Dr. Hoagland was Assistant Professor at the School of International Service at American University where she created the International Environment and Development Semester, which included three-week field practicums to East Africa and Central America. Dr. Hoagland was also the Director and Clinical Associate Professor for the Masters in Development Practice Program at the Josef Korbel School of International Studies at the University of Denver, where she also serves on the Board of Directors. She earned her BA in government from Wesleyan University, her MA in International Relations and Curriculum Development from the University of Denver, and her PhD in International Relations from American University.
She was a national silver medalist in pairs figure skating and earned 10 varsity letters at Wesleyan in field hockey, spring board diving--founder and co-captain and lacrosse--founder and co-captain..The Suki Hoagland Award for Outstanding Contribution to Women's Athletics has been awarded annually ever since. -
Leo Hollberg
Professor (Research) of Physics and of Geophysics
BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?
Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives. -
Randall Holmes
Lecturer
BioAfter completing service in the U.S. Army, Randall transferred into Stanford University where he completed a BS in Civil and Environmental Engineering, Atmosphere and Energy track, as well as a master’s degree in Earth System Science. Randall is currently working toward his PhD in Stanford’s Emmett Interdisciplinary Program in Environment and Resources (E-IPER). Randall is considering research on the implementation of California’s Sustainable Groundwater Management Act, with specific interests in geochemical processes that afffect groundwater quality, water policy, and adaptive management with Prof. Scott Fendorf and Prof. Leon Szeptycki.
-
Else Holmfred
Affiliate, Earth & Planetary Sciences
Visiting Scholar, Earth & Planetary SciencesBioI was awarded the Novo Nordisk Foundation Visiting Scholar Stanford Bio-X Fellowship in 2023 and the Carlsberg Foundation Internationalisation Fellowship in 2022 to conduct my research at Stanford University, USA. My research combines the knowledge and experimental expertise from biogeochemistry with pharmaceutical science. I aim to establish a new pharmaceutical methodology using isotopic and trace elemental analysis to identify non-visual drug counterfeits.
-
Alexander Honeyman
Postdoctoral Scholar, Earth System Science
BioMy Ph.D. was concerned with the biogeochemistry and recovery of post-wildfire soils. I work at the intersections of data science, field work, laboratory experimentation, biogeochemistry, and microbial ecology. I was exposed to the issue of wildland fire through 10 years of experience as a volunteer firefighter / EMT in Colorado (fire / rescue / EMS). My current work involves two major thrusts: 1) I use data science strategies to decipher links between groundwater overuse and groundwater quality in Colorado. 2) I investigate the geochemical character of wildfire smoke by hybridizing analyses of physical samples with various geospatial datasets and atmospheric particle transport models. I love working in environmental systems because they are complex, and offer numerous opportunities to blend the physical and computational sciences.
-
Roland Horne
Thomas Davies Barrow Professor
Current Research and Scholarly InterestsWell Testing, Optimisation and Geothermal Reservoir Engineering
-
Mark Horowitz
Fortinet Founders Chair of the Department of Electrical Engineering, Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science
BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.
In the 2000s he started a long collaboration with Prof. Levoy on computational photography, which included work that led to the Lytro camera, whose photographs could be refocused after they were captured.. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams. -
Alison Hoyt
Assistant Professor of Earth System Science and Center Fellow, by courtesy, at the Woods Institute for the Environment
BioAlison Hoyt is an Assistant Professor of Earth System Science at Stanford. Her work focuses on understanding how biogeochemical cycles respond to human impacts, with a particular focus on the most vulnerable and least understood carbon stocks in the tropics and the Arctic. For more information, please visit her group website here: https://carboncycle.stanford.edu/
-
Solomon Hsiang
Professor of Environmental Social Sciences
Current Research and Scholarly InterestsEnvironmental Policy, Economics, Data Science, Intl Governance, Climate
-
Lily Hsueh
Affiliate, Woods Institute
BioLily Hsueh is an Associate Professor of Economics and Public Policy in the School of Public Affairs at the Arizona State University (ASU) and a Visiting Scholar in the Woods Institute for the Environment at Stanford University. Her research investigates how different forms and scales of alternative and decentralized governance systems (e.g., market-based policies and voluntary programs) interact and shape the public and private provision of public goods and the management of natural resources and the environment. Questions of interest to Dr. Hsueh include, will decentralized environmental approaches produce real and sizeable impact? If so, by how much? Under what economic and political conditions do they work? How should they be designed? Who (and which groups) stand to gain or lose?
Funders for Dr. Hsueh's work include the National Research Council, National Oceanic and Atmospheric Administration (NOAA), and the V. Kann Rasmussen Foundation. Prior to joining ASU, Dr. Hsueh was a National Research Council Postdoctoral Fellow at NOAA. She holds a Ph.D. in Public Policy & Management from the University of Washington, a MSc in Economics from University College London, and a BA in Economics from UC Berkeley.
At Woods, Dr. Hsueh is currently completing a MIT Press-contracted book in progress, which investigates the demand for, and supply of, global businesses' climate mitigation and adaptation, across sectors and in rich and poor countries. The book draws on large-N statistical analyses and and illustrative company case studies. It examines the multi-faceted factors across levels of governance and government, which motivate some global businesses but not others to engage in proactive climate action.
https://www.lilyhsueh.com/ -
Qi Hu
Postdoctoral Scholar, Energy Science and Engineering
BioI am a postdoctoral scholar collaborating with Tapan Mukerji on developing innovative workflows for monitoring subsurface CO2 sequestration. My research primarily involves integrating advanced seismic inversion techniques, such as full-waveform inversion, with rock physics and fluid dynamics to glean insights into subsurface structures and behaviors. Additionally, I am intrigued by the potential of distributed acoustic sensing and machine learning algorithms in various topics related to energy transition.
-
Robert Huggins
Professor of Materials Science and Engineering, Emeritus
BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.
His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.
Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.
He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016. -
Holmes Hummel, PhD
Managing Director Energy Equity & Just Transitions, Precourt Institute for Energy
Current Role at StanfordEnergy Equity & Just Transitions, Managing Director
Precourt Institute for Energy
Resident Fellow, Explore Energy House
Coordinating Council Member, Environmental Justice Working Group
Advisory Member, Partnership in Climate Justice in the Bay
Collaborator in Collaborative Learning about Equity and Rapid Decarbonization (CLEAR Decarbonization), one of the first projects selected for an award from the Stanford Sustainability Accelerator -
Hillard Huntington
Executive Director, Energy Modeling Forum
Researcher, Management Science and Engineering - Energy Modeling Forum
Staff, Management Science and Engineering - Energy Modeling ForumBioHuntington is Executive Director of Stanford University's Energy Modeling Forum, where he conducts studies to improve the usefulness of models for understanding energy and environmental problems. In 2005 the Forum received the prestigious Adelman-Frankel Award from the International Association for Energy Economics for its "unique and innovative contribution to the field of energy economics."
His current research interests are modeling energy security, energy price shocks, energy market impacts of environmental policies, and international natural gas and LNG markets. In 2002 he won the Best Paper Award from the Energy Journal for a paper co-authored with Professor Dermot Gately of New York University.
He is a Senior Fellow and a past-President of the United States Association for Energy Economics and a member of the National Petroleum Council. He was also Vice-President for Publications for the International Association for Energy Economics and a member of the American Statistical Association's Committee on Energy Data. Previously, he served on a joint USA-Russian National Academy of Sciences Panel on energy conservation research and development.
Huntington has testified before the U.S. Senate Committee on Foreign Relations and the California Energy Commission.
Prior to coming to Stanford in 1980, he held positions in the corporate and government sectors with Data Resources Inc., the U.S. Federal Energy Administration, and the Public Utilities Authority in Monrovia, Liberia (as a U.S. Peace Corps Volunteer). -
Stepfan Huntsman
Ph.D. Student in Geological Sciences, admitted Winter 2022
Research Collections Asst, Earth Specimen CollectionBioI've had an interest in rocks and fossils since I was a small child, amassing a large collection in my youth, but hadn't considered it a viable career path instead starting my path as a social scientist studying gender and sexuality. My interest in a career in paleontology peaked after finishing my first degree, leading me to pursue a second bachelors degree. While working on my undergraduate at Weber State I discovered a true deep love of plants as well as a curiosity about the methods they use to adapt to new environments, which has lead me to pursuing a doctoral degree here at Stanford University.
-
Gianluca Iaccarino
Professor of Mechanical Engineering
Current Research and Scholarly InterestsComputing and data for energy, health and engineering
Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.
Multidisciplinary Teaching
I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results. -
Dan Iancu
Associate Professor of Operations, Information and Technology at the Graduate School of Business
BioDan Iancu is an Associate Professor of Operations, Information and Technology at the Stanford Graduate School of Business. His research and teaching interests are in responsible analytics and AI and data-driven optimization, with applications in supply chain management, FinTech, and healthcare. His work is aimed both at improving existing methodological tools (e.g., by making them more robust, fair, or transparent) and at applying these to design more effective, more equitable, and more sustainable solutions for complex operational problems. An area of particular focus in his recent research has been the design of better procurement, payment, and financing solutions in global supply chains, where material and financial flows carry both immediate and long-term impact on the lives of millions of people and on the environment.
-
Matthias Ihme
Professor of Mechanical Engineering, of Photon Science and, by courtesy, of Energy Science and Engineering
BioLarge-eddy simulation and modeling of turbulent reacting flows, non-premixed flame, aeroacoustics and combustion generated noise, turbulence and fluid dynamics, numerical methods and high-order schemes.
-
James C. Ingle, Jr.
The W. M. Keck Professor of Earth Sciences, Emeritus
Current Research and Scholarly InterestsCurrent research interests include the Neogene stratigraphy, paleoceanography, and depositional history of marine basins and continental margins of the Pacific Ocean with a focus on the California borderland and Gulf of California. Other interests involve study of marine diatomaceous sediments, the sedimentary record of the oxygen minimum zone, and application of benthic and planktonic foraminifera to questions surrounding the history of the global ocean and climate change.
-
John P.A. Ioannidis
Professor of Medicine (Stanford Prevention Research), of Epidemiology and Population Health and, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsMeta-research
Evidence-based medicine
Clinical and molecular epidemiology
Human genome epidemiology
Research design
Reporting of research
Empirical evaluation of bias in research
Randomized trials
Statistical methods and modeling
Meta-analysis and large-scale evidence
Prognosis, predictive, personalized, precision medicine and health
Sociology of science -
Keith Iverson
IT/Web Manager, Stanford Doerr School of Sustainability - Dean's Office
Current Role at StanfordIT/Web Manager at the Stanford Woods Institute for the Environment
-
Amanda Jackson
Ph.D. Student in Geological Sciences, admitted Autumn 2022
BioI’ve long been fascinated with volcanoes, and my research interests broadly include igneous petrology, trans-crustal magmatic systems, high temperature geochemistry, and geo/thermochronology. My first PhD project explores the formation of Catalina Island and investigates pluton assembly in continental rift settings. In my free time, I enjoy hiking, camping, backpacking, reading, yoga, and playing with my cat, Carl.
-
Rob Jackson
Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy
BioRob Jackson and his lab examine the many ways people affect the Earth. They produce basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other environmental issues. They're currently examining the effects of climate change and drought on old-growth forests. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs. Examples of new research Rob leads include establishing a global network of methane tower measurements across the Amazon and more than 100 sites worldwide and measuring and reducing methane emissions and air pollution from oil and gas wells, city streets, and homes and buildings.
Rob's new book on climate solutions, Into the Clear Blue Sky (Scribner and Penguin Random House), was named a "Top Science Book of 2024" by The Times. As an author and photographer, Rob has published a previous trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.
Rob is a recent Djerassi artist in residence, Guggenheim Fellow, and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Academy of Arts and Sciences, American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House. -
Mark Z. Jacobson
Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment
BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.
-
Thomas Jaramillo
Professor of Chemical Engineering, of Energy Science Engineering, and of Photon Science
On Leave from 10/01/2024 To 06/30/2025BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.
-
Ramesh Johari
Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering
On Partial Leave from 01/01/2025 To 06/30/2025BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).
-
Leigh Johnson
Academic Research & Program Officer, Precourt Institute for Energy
BioLeigh works closely with the faculty co-directors and staff to implement the institute’s vision and strategic direction. She manages a team who supports the energy research, education and outreach mission of the institute and Stanford broadly. The institute serves as the hub for over 200 faculty across the university who conduct energy research, students from Stanford’s seven schools, and staff from energy programs and centers across Stanford. Outreach activities engage stakeholders from industry, government and non-governmental organizations, academia and the Stanford alumni community in an energy ecosystem. Activities that serve this broad constituency include several annual conferences, topical workshops, student programs and the weekly Stanford Energy Seminar. The team covers energy news and information across the university through articles in Stanford Report, the institute's website, the monthly Stanford Energy News and social media.
Leigh started at Stanford in 2003 as project development director for the Provost Committee for the Environment, and as the first employee she served as associate director of programs at the Stanford Woods Institute for the Environment where she worked for seven years on a wide-range of entrepreneurial and programmatic activities. Prior to joining Stanford, Leigh worked in public relations at Regis McKenna Inc. and sales at IBM. Non-profit commitments have included: president of the Las Lomitas Education Foundation, president of the Ragazzi Boys Chorus Board of Directors, and docent for Y2E2 building tours. Leigh holds an A.B. degree in mathematics from Dartmouth College. -
Thomas Johnson
Water Communication and Knowledge Manager, Stanford Woods Institute for the Environment
BioTom manages communications for two water-related programs within the Stanford Woods Insitute for the Environment: Water in the West; and Water, Health & Development. Prior to coming to Stanford in 2022, Tom managed a graduate program at Cal Poly San Luis Obispo that prepared students for careers in the dairy foods industry. A seasoned communications professional, he once served as business editor at The Coloradoan, a Gannett daily newspaper, and was editor of Outlook Magazine, a publication of Colorado State University's College of Natural Sciences. Tom earned a Master's degree in Watershed Science from Colorado State University and was the founding director of the Colorado Springs-based Fountain Creek Watershed Project, an intergovernmental task force that won consensus buy-in for a plan that guides management of the Pikes Peak watershed. Tom is also an award-winning cheesemaker and musician.
-
Shaili Johri
Basic Life Research Scientist
BioI am a geneticist who works in the field of marine science and conservation. My work is aimed at reducing knowledge gaps in conservation science through scientific research, community partnerships and knowledge exchange across disciplines. Genomics research by our group aims to inform conservation policy and assist in reducing illegal wildlife trade.
-
James Holland Jones
Professor of Environmental Social Sciences and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsI am a biological anthropologist with primary research interests in evolutionary demography and life history theory. In addition these fundamental interests in the evolution of human life histories, I work at the intersection of disease ecology, the analysis of dynamical systems, and social network analysis. My work combines the formalisms of population biology, statistics, and social network analysis to address fundamental problems in biodemography, epidemiology, and human decision-making in variable environments.
-
Rob Jordan
Associate Editor, Environment and Sustainability, Woods Institute
Current Role at StanfordAssociate Editor, Environment and Sustainability, Stanford Woods Institute for the Environment
-
Shaunak Joshi
Ph.D. Student in Energy Resources Engineering, admitted Autumn 2022
BioI am Shaunak, from India. I am starting my PhD in Energy Science and Engineering with Prof. Daniel Tartakovsky and Prof. Hamdi Tchelepi. My research will primarily focus on pore-scale modeling of lithium-based batteries.
Prior to this, I graduated from the Indian Institute of Technology (IIT) Bombay with a Bachelor's and a Master's in Energy Science and Engineering. I love to play all sorts of sports, especially football, badminton, and cricket. You would usually see me running around the campus on odd days. Hit me up if you want to have a chat! -
Andre Journel
The Donald and Donald M. Steel Professor of Earth Sciences, Emeritus
Current Research and Scholarly InterestsNon-parametric, non-Gaussian Geostatistics, Stochastic Simulation, Training image-based simulation
-
Arpita Kalra
Marketing and Engagement Director, Precourt Institute for Energy
BioArpita Kalra is the Director for Marketing and Engagement at Precourt Institute for Energy. In this role she oversees the engagement and outreach efforts for the Stanford Energy brand. Prior to Stanford, she worked in the advertising industry where she developed and executed marketing campaigns across print, electronic and social media. Arpita holds a masters in Marketing Communications from the Mudra Institute of Communications, Ahmedabad (MICA) in India and a bachelors in Statistics from Delhi University.
-
Zerina Kapetanovic
Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science and of Geophysics
BioZerina Kapetanovic is an Assistant Professor in the Department of Electrical Engineering at Stanford University working in the area of low-power wireless communication, sensing, and Internet of Things (IoT) systems. Prior to starting at Stanford, Kapetanovic was a postdoctoral researcher at Microsoft Research in the Networking Research Group and Research for Industry Group.
Kapetanovic's research has been recognized by the Yang Research Award, the Distinguished Dissertation Award from the University of Washington. She also received the Microsoft Research Distinguished Dissertation Grant and was selected to attend the 2020 UC Berkeley Rising Stars in EECS Workshop. Kapetanovic completed her PhD in Electrical Engineering from the University of Washington in 2022. -
Omer Karaduman
Assistant Professor of Operations, Information and Technology at the Graduate School of Business and Center Fellow at the Stanford Institute for Economic Policy Research and at the Precourt Institute for Energy
BioPrior to coming to Stanford, Omer completed his Ph.D. in Economics at MIT in 2020, and got his bachelor's degree in Economics from Bilkent University in 2014.
His research focuses on the transition of the energy sector towards a decarbonized and sustainable future. In his research, he utilizes large datasets by using game-theoretical modeling to have practical policy suggestions.