Wu Tsai Neurosciences Institute
Showing 201-250 of 597 Results
-
Michael Greicius, MD, MPH
Iqbal Farrukh and Asad Jamal Professor and Professor, by courtesy, of Psychiatry and Behavioral Sciences (Administrative and Academic Special Programs)
Current Research and Scholarly InterestsAs the Founding Director of the Stanford Center for Memory Disorders and Principal Investigator of a lab focused on the genetics of Alzheimer's disease (AD), Dr. Greicius' research focuses on elucidating the neurobiologic underpinnings of AD. His lab combines cutting edge brain imaging, "deep" phenotyping, and whole-genome sequencing of human subjects to identify novel pathways involved in AD pathogenesis. The goal of his work is to develop effective treatment for AD patients.
-
Kalanit Grill-Spector
Susan S. and William H. Hindle Professor in the School of Humanities and Sciences
Current Research and Scholarly InterestsFor humans, recognition is a natural, effortless skill that occurs within a few hundreds of milliseconds, yet it is one of the least understood aspects of visual perception. Our research utilizes functional imaging (fMRI),diffusion weighted imaging (DWI), computational techniques, and behavioral methods to investigate the neural mechanisms underlying visual recognition in humans. We also examine the development of these mechanisms from childhood to adulthood as well as between populations.
-
James Gross
Ernest R. Hilgard Professor, Professor of Psychology and, by courtesy, of Philosophy
Current Research and Scholarly InterestsI am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.
-
Geoffrey Gurtner
Johnson & Johnson Distinguished Professor of Surgery, Emeritus
Current Research and Scholarly InterestsGeoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.
-
Hyowon Gweon
Associate Professor of Psychology
BioHyowon (Hyo) Gweon (she/her) is an Associate Professor in the Department of Psychology. As a leader of the Social Learning Lab, Hyo is broadly interested in how humans learn from others and help others learn: What makes human social learning so powerful, smart, and distinctive? Taking an interdisciplinary approach that combines developmental, computational, and neuroimaging methods, her research aims to explain the cognitive underpinnings of distinctively human learning, communication, and prosocial behaviors.
Hyo received her PhD in Cognitive Science (2012) from MIT, where she continued as a post-doc before joining Stanford in 2014. She has been named as a Richard E. Guggenhime Faculty Scholar (2020) and a David Huntington Dean's Faculty Scholar (2019); she is a recipient of the APS Janet Spence Award for Transformative Early Career Contributions (2020), Jacobs Early Career Fellowship (2020), James S. McDonnell Scholar Award for Human Cognition (2018), APA Dissertation Award (2014), and Marr Prize (best student paper, Cognitive Science Society 2010). -
Laura Gwilliams
Assistant Professor of Psychology and, by courtesy, of Linguistics
BioLaura Gwilliams is jointly appointed between Stanford Psychology, Wu Tsai Neurosciences Institute and Stanford Data Science. Her work is focused on understanding the neural representations and operations that give rise to speech comprehension in the human brain. To do so, she brings together insight from neuroscience, linguistics and machine learning, and takes advantage of recording techniques that operate at distinct spatial scales (MEG, ECoG and Neuropixels).
-
Nicholas Haber
Assistant Professor of Education
Current Research and Scholarly InterestsI use AI models of of exploratory and social learning in order to better understand early human learning and development, and conversely, I use our understanding of early human learning to make robust AI models that learn in exploratory and social ways. Based on this, I develop AI-powered learning tools for children, geared in particular towards the education of those with developmental issues such as the Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder, in the mold of my work on the Autism Glass Project. My formal graduate training in pure mathematics involved extending partial differential equation theory in cases involving the propagation of waves through complex media such as the space around a black hole. Since then, I have transitioned to the use of machine learning in developing both learning tools for children with developmental disorders and AI and cognitive models of learning.
-
Scott S. Hall, Ph.D
Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry and Child Development)
Current Research and Scholarly InterestsMy primary area of scholarly and clinical interest is the pathogenesis of problem behaviors shown by individuals diagnosed with intellectual and developmental disabilities (IDD), particularly those with neurogenetic forms of IDD, such as fragile X syndrome, Cornelia de Lange syndrome and Prader-Willi syndrome. My work aims to both advance understanding of these disorders and to identify effective new treatment approaches for pediatric and adult patient populations by state-of-the-art methodologies, such as brain imaging, eye tracking and functional analysis to determine how environmental and biological factors affect the development of aberrant behaviors in these syndromes. The end goal of my research is to create patient-specific methods for treating the symptoms of these disorders.
-
Joachim Hallmayer
Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry and Child Development)
On Partial Leave from 09/01/2024 To 08/31/2026Current Research and Scholarly InterestsPrincipal Investigator
Infrastructure to facilitate discovery of autism genes
The purpose of this project is to facilitate the discovery of the genes that contribute autism by maintaining an infrastructure which research groups studying the genetics of autism can work collaboratively. This will be
accomplished through workshops, a Virtual Private Network, and access to a database that includes phenotype and genotype data from all participating groups.
Principal Investigator
A California Population-Based Twin Study of Autism
This will address several fundamental questions: (1) What is the heritability of autism (2) What is the contribution of genetic factors to variation in symptom dimensions? (3) Is there a continuum between the quantitative neurocognitive traits and clinical disorder? (4) What proportion of the variance in the neurocognitive traits is accounted for by genetic and non-genetic factors?
Co-Investigator
Center for Integrating Ethics in Genetics Research(Cho)
The goal of this project is to serve as a center of excellence in neurogenetics research, to develop a national model for bench, to bedside research ethics consultation, and to provide training opportunity in biomedical ethics.
Co-Investigator
Gene, Brain and Behavior in Turner Syndrome(Reiss)
The primary objective of this project is to use advanced, multi-modal magnetic resonance imaging (MRI) techniques, analyses of X chromosome parent-of-origin and cognitive-behavioral assessment to elucidate the effects of monosomy and X-linked imprinting on neurodevelopment and neural function in a large cohort of young girls with Turner syndrome, pre-estrogen replacement.
Project Director
Project F: Genomic Analysis in narcolepsy cataplexy
The goal of the project is to locate genes outside the HLA region that influence susceptibility to narcolepsy. In order to localize these genes we will carry out a linkage and association study in the most extensive world-wide collection of DNAs from well-characterized patients with narcolepsy and their families. -
May Han, MD
Associate Professor of Neurology and Neurological Sciences (Adult Neurology)
On Leave from 10/01/2024 To 04/30/2025Current Research and Scholarly InterestsMultiple sclerosis
Neuromyelitis optica
Autoimmune CNS disorders -
Antonio Hardan, M.D.
Professor of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsThe neurobiology of autism
Neuroimaging in individuals with autism
Psychopharmacological treatment of children and adults with autism and/or developmental disorders
The neurobiology and innovative interventions of several neurogenic disorders including DiGeorge Syndrome (Velocardiofacial syndrome; 22q11.2 mutations), PTEN mutations, and Phelan McDermid Syndrome (22q13 mutations). -
Keren Haroush
Assistant Professor of Neurobiology
Current Research and Scholarly InterestsOur laboratory studies the mechanisms by which highly complex behaviors are mediated at the neuronal level, mainly focusing on the example of dynamic social interactions and the neural circuits that drive them. From dyadic interactions to group dynamics and collective decision making, the lab seeks a mechanistic understanding for the fundamental building blocks of societies, such as cooperation, empathy, fairness and reciprocity.
-
James Harris
James and Elenor Chesebrough Professor in the School of Engineering, Emeritus
BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. His early work in the 1970's demonstrating a practical heterojunction bipolar transistor led to their application in every mobile phone today and record setting solar cell efficiency. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.
-
Trevor Hastie
John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences
On Leave from 01/01/2025 To 03/31/2025Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.
-
Robert Hawkins
Assistant Professor of Linguistics
BioI direct the Social Interaction & Language (SoIL) Lab at Stanford University. We're interested in the cognitive mechanisms that allow people to flexibly communicate, collaborate, and coordinate with one another. We work on these problems using large-scale, multi-player web experiments and computational models of language and social reasoning.
-
Melanie Hayden Gephart
Professor of Neurosurgery and, by courtesy, of Neurology and Neurological Sciences
BioI am a brain tumor neurosurgeon, treating patients with malignant and benign tumors, including gliomas, brain metastases, meningiomas, and schwannomas. I direct the Stanford Brain Tumor Center and the Stanford Brain Metastasis Consortium, collaborative unions of physicians and scientists looking to improve our understanding and treatment of brain tumors. My laboratory seeks greater understanding of the mechanisms driving tumorigenesis and disease progression in malignant brain tumors. We study how rare cancer cell populations survive and migrate in the brain, inadvertently supported by native brain cells. We develop novel cerebrospinal fluid-based biomarkers to track brain cancer treatment response, relapse, and neurotoxicity. Our bedside-to-bench-to-bedside research model builds on a foundation of generously donated patient samples, where we test mechanisms of brain cancer growth, develop novel pre-clinical models that reliably recapitulate the human disease, and facilitate clinical trials of new treatments for patients with brain cancer.
www.GephartLab.com
www.GBMseq.org
https://stan.md/BrainMets
@HaydenGephartMD -
Zihuai He
Assistant Professor (Research) of Neurology and Neurological Sciences (Neurology Research), of Medicine (BMIR) and, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsStatistical genetics and other omics to study Alzheimer's disease.
-
Boris Heifets
Associate Professor of Anesthesiology, Perioperative and Pain Medicine (MSD) and, by courtesy, of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology (Adult))
Current Research and Scholarly InterestsHarnessing synaptic plasticity to treat neuropsychiatric disease
-
Sarah Heilshorn
Director, Geballe Laboratory for Advanced Materials (GLAM), Rickey/Nielsen Professor in the School of Engineering and Professor, by courtesy, of Bioengineering and of Chemical Engineering
Current Research and Scholarly InterestsProtein engineering
Tissue engineering
Regenerative medicine
Biomaterials -
Jeremy J. Heit, MD, PhD
Associate Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsOur research seeks to advance our understanding of cerebrovascular disease and to develop new minimally invasive treatments for these diseases. We study ischemic and hemorrhagic stroke, cerebral aneurysms, delayed cerebral ischemia, cerebral arteriovenous malformations (AVMs), dural arteriovenous fistulae, and other vascular diseases of the brain. We use state-of-the-art neuroimaging techniques to non-invasively study these diseases, and we are developing future endovascular technologies to advance neurointerventional surgery.
www.heitlab.com -
H. Craig Heller
Lorry I. Lokey/Business Wire Professor
Current Research and Scholarly InterestsNeurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.
-
Stefan Heller
Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsOur research focuses on the inner ear, from its earliest manifestation as one of the cranial placodes until it has developed into a mature and functioning organ. We are interested in how the sensory epithelia of the inner ear that harbor the sensory hair cells develop, how the cells mature, and how these epithelia respond to toxic insults. The overarching goal of this research is to find ways to regenerate lost sensory hair cells in mammals.
-
Jaimie Henderson, MD
John and Jene Blume - Robert and Ruth Halperin Professor, Professor of Neurosurgery and, by courtesy, of Neurology and Neurological Sciences
Current Research and Scholarly InterestsMy research interests encompass several areas of stereotactic and functional neurosurgery, including frameless stereotactic approaches for therapy delivery to deep brain nuclei; cortical physiology and its relationship to normal and pathological movement; brain-computer interfaces; and the development of novel neuromodulatory techniques for the treatment of movement disorders, epilepsy, pain, and other neurological diseases.
-
Victor W. Henderson, MD, MS
Professor of Epidemiology and Population Health and of Neurology and Neurological Sciences
Current Research and Scholarly InterestsResearch interests:
(1) Risk factors for age-associated cognitive decline and for dementia.
(2) Therapeutic strategies to improve cognitive abilities in aging and in dementia.
(3) Brain–behavior relations as they pertain to human cognition. -
Tina Hernandez-Boussard
Professor of Medicine (Biomedical Informatics), of Biomedical Data Science, of Surgery and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsMy background and expertise is in the field of computational biology, with concentration in health services research. A key focus of my research is to apply novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. My research involves managing and manipulating big data, which range from administrative claims data to electronic health records, and applying novel biostatistical techniques to innovatively assess clinical and policy related research questions at the population level. This research enables us to create formal, statistically rigid, evaluations of healthcare data using unique combinations of large datasets.
-
Rogelio A. Hernández-López
Assistant Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsOur group works at the interface of mechanistic, synthetic, and systems biology to understand and program cellular recognition, communication, and organization. We are currently interested in engineering biomedical relevant cellular behaviors for cancer immunotherapy.
-
Lambertus Hesselink
Professor of Electrical Engineering and, by courtesy of Applied Physics
BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.
-
Shaul Hestrin, PhD
Professor of Comparative Medicine
Current Research and Scholarly InterestsThe main interest of my lab is to understand how the properties of neocortical neurons, the circuits they form and the inputs they receive give rise to neuronal activity and behavior. Our approach includes behavioral studies, two-photon calcium imaging, in vivo whole cell recording in behaving animals and optogenetic methods to activate or to silence the activity of cortical neurons.
-
Karen G. Hirsch, MD
Professor of Neurology and Neurological Sciences (Adult Neurology)
Current Research and Scholarly InterestsDr. Karen G. Hirsch cares for critically ill patients with neurologic disorders in the intensive care unit. Dr. Hirsch's research focuses on using continuous and discrete multi-modal data to develop phenotypes and identify signatures of treatment responsiveness in patients with coma after cardiac arrest. She is the Co-PI of PRECICECAP (PRecision Care In Cardiac ArrEst - ICECAP, NINDS R01 NS119825-01). The research team works closely with collaborators in data science at Stanford and with industry partners to apply machine learning analyses to complex multi-modal ICU data. Dr. Hirsch also studies neuro-imaging in post-cardiac arrest coma and traumatic brain injury, and with colleagues in Cardiac Anesthesia and Cardiothoracic Surgery, Dr. Hirsch studies neurologic outcomes in patients on mechanical circulatory support including ECMO.
Along with colleagues in Biomedical Ethics, Dr. Hirsch studies brain death, organ donation, and neuroethics. She is the Co-PI of BCI-DEF (Brain Computer Interfaces and Disability: Developing an Inclusive Ethical Framework, NIMH 1R01MH130518-01) which is a BRAIN Initiative funded study that is qualitatively evaluating end user perspectives about the benefits, risks, and ethical challenges of Brain Computer Interfaces for patients with acute stroke or traumatic brain injury.
Dr. Hirsch is broadly interested in improving neurologic outcomes after acute severe brain injury, identifying early phenotypes to guide precision medicine in neurocritical care, and exploring ethical issues in neurocritical care and novel neurotechnology. Dr. Hirsch greatly appreciates the importance of team science and collaboration. -
Susan Holmes
Professor of Statistics, Emerita
Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology. -
David S. Hong
Associate Professor of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)
Current Research and Scholarly InterestsDr. Hong is a child and adolescent psychiatrist and clinician-scientist. His responsibilities span clinical care, teaching/mentorship, and research, with a unifying theme of advancing a developmental cognitive framework as applied to psychiatric conditions. Using this core premise, he work encompasses multiple domains: specialized clinical care, fellowship training, research mentorship, and elaborating the role of sex-specific determinants of development, one of the greatest contributors to individual developmental variation.
His lab investigates genetic and hormonal influences underlying sex differences in child psychiatric conditions. Sex has emerged as a critical variable driving differences in the phenomenology, course, and treatment of many mental health disorders. Unfortunately, an understanding of the biological mechanisms driving these effects are limited. By applying innovative neuroimaging and multiomic approaches, Dr. Hong seeks to provide a deeper understanding of the connection between sex-specific effects and complex psychiatric diseases. To do so, research in the Hong Lab focuses on the role of genes on the X and Y chromosomes, as well as circulating sex hormones on brain development, cognition, and behavior. The lab broadly aims to elucidate the changing nature of these mechanisms across various stages of development.
Another area of focus is the implementation of clinical informatics in child psychiatry and the development of digital mental health tools. As co-Director of the Mental Health Technology and Innovation Hub, Dr. Hong is helping to develop clinical and research infrastructure within the Department of Psychiatry and Behavioral Sciences to advance development of mobile mental health resources that will improve efficacy and access to mental health care. -
Guosong Hong
Assistant Professor of Materials Science and Engineering
BioGuosong Hong's research aims to bridge materials science and neuroscience, and blur the distinction between the living and non-living worlds by developing novel neuroengineering tools to interrogate and manipulate the brain. Specifically, the Hong lab is currently developing ultrasound, infrared, and radiofrequency-based in-vivo neural interfaces with minimal invasiveness, high spatiotemporal resolution, and cell-type specificity.
Dr. Guosong Hong received his PhD in chemistry from Stanford University in 2014, and then carried out postdoctoral studies at Harvard University. Dr. Hong joined Stanford Materials Science and Engineering and Neurosciences Institute as an assistant professor in 2018. He is a recipient of the NIH Pathway to Independence (K99/R00) Award, the MIT Technology Review ‘35 Innovators Under 35’ Award, the Science PINS Prize for Neuromodulation, the NSF CAREER Award, the Walter J. Gores Award for Excellence in Teaching, and the Rita Allen Foundation Scholars Award. -
Yusuke Hori, MD
Clinical Instructor, Neurosurgery
BioDr. Hori received his MD from Sapporo Medical University, Japan, and during that time he served as a Medical Student Research Fellow in the Department of Pharmacology. He explored the functional role of the SIRT1 gene, a longevity-associated gene, and its association with various conditions such as muscular dystrophy. He also completed a Visiting Student Research Fellowship at the Health Sciences University of Hokkaido and participated in Human Genetics projects focusing on an association between the 27-bp deletion and 538G>A mutation in the ABCC11 Gene.
After graduating from medical school, Dr. Hori completed a neurosurgery residency at National Hospital Organization Okayama Medical Center in Japan. Subsequently, he completed a Stereotactic and Functional Neurosurgery Fellowship and then a Neurosurgical Oncology and Radiosurgery Fellowship at The Cleveland Clinic. He also completed an International Neurosurgery Fellowship at Boston Children's Hospital, Harvard Medical School. In 2022, he moved to Stanford University as a postdoctoral fellow, and under the supervision of Dr. Anca Pasca, he participated in brain organoid research focusing on hypoxic brain injuries.
Since July 2023, Dr. Hori has been working as a Clinical Instructor (Neurosurgical Oncology and Radiosurgery) in the Department of Neurosurgery at Stanford under the supervision of Dr. Steven D. Chang. His clinical interests include malignant brain and spine tumors in both adult and pediatric patients. His clinical research focuses on the application of minimally invasive treatments such as laser interstitial thermal therapy, focused ultrasound, and radiosurgery to treat various neurosurgical conditions. His current lab research aims to develop an organoid model for radiation-induced brain injuries and a high-throughput screening platform to identify novel therapeutic compounds, for which he received a Clinician Educator Grant from Stanford University Maternal and Child Health Research Institute. Outside of medicine, he enjoys playing music including guitar and drums. -
Mark Horowitz
Fortinet Founders Chair of the Department of Electrical Engineering, Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science
BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.
In the 2000s he started a long collaboration with Prof. Levoy on computational photography, which included work that led to the Lytro camera, whose photographs could be refocused after they were captured.. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams. -
Hadi Hosseini
Associate Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)
Current Research and Scholarly InterestsOur lab’s research portfolio crosses multiple disciplines including computational neuropsychiatry, cognitive neuroscience, multimodal neuroimaging and neurocognitive rehabilitation. Our computational neuropsychiatry research mainly involves investigating alterations in the organization of connectome in various neurodevelopmental and neurocognitive disorders using state of the art neuroimaging techniques (fMRI, sMRI, DWI, functional NIRS) combined with novel computational methods (graph theoretical and multivariate pattern analyses).
The ultimate goal of our research is to translate the findings from computational neuropsychiatry research toward developing personalized interventions. We have been developing personalized interventions that integrate computerized cognitive rehabilitation, real-time functional brain imaging and neurofeedback, as well as virtual reality (VR) tailored toward targeted rehabilitation of the affected brain networks in patients with neurocognitive disorders. -
Roger Howe
William E. Ayer Professor of Electrical Engineering, Emeritus
BioDesign and fabrication of sensors and actuators using micro and nanotechnologies, with applications to information processing and energy conversion.
-
Yang Hu, MD, PhD
Professor of Ophthalmology
Current Research and Scholarly InterestsThe ultimate goal of the laboratory is to develop efficient therapeutic strategies to achieve CNS neural repair, through promoting neuroprotection, axon regeneration and functional recovery.
More specifically, we study retinal ganglion cell (RGC) and optic nerve in various optic neuropathies including traumatic, glaucomatous and inflammatory optic nerve injuries to fully understand the molecular mechanisms of CNS neurodegeneration and axon regeneration failure. -
Ting-Ting Huang
Associate Professor (Research) of Neurology (Adult Neurology), Emerita
Current Research and Scholarly InterestsWe study the role of oxygen free radicals in oxidative tissue damage and degeneration. Our research tools include transgenic and knockout mice and tissue culture cells for in vitro gene expression.
-
Andrew D. Huberman
Associate Professor of Neurobiology and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsIn 2017, we developed a virtual reality platform to investigate the neural and autonomic mechanisms contributing to fear and anxiety. That involved capturing 360-degree videos of various fear-provoking situations in real life for in-lab VR movies, such as heights and claustrophobia, as well as unusual scenarios like swimming in open water with great white sharks. The primary objective of our VR platform is to develop new tools to help people better manage stress, anxiety and phobias in real-time, as an augment to in-clinic therapies.
In May 2018, we reported the discovery of two novel mammalian brain circuits as a Research Article published in Nature. One circuit promotes fear and anxiety-induced paralysis, while the other fosters confrontational reactions to threats. This led to ongoing research into the involvement of these brain regions in anxiety-related disorders such as phobias and generalized anxiety in humans.
In 2020, we embarked on a collaborative effort with Dr. David Spiegel's laboratory in the Stanford Department of Psychiatry and Behavioral Sciences, aimed to explore how specific respiration patterns synergize with the visual system to influence autonomic arousal and stress, and other brain states, including sleep.
In 2023, the first results of that collaboration were published as a randomized controlled trial in Cell Reports Medicine, demonstrating that specific brief patterns of deliberate respiration are particularly effective in alleviating stress and enhancing mood, and improving sleep.
In a 2021, our collaboration with Dr. Edward Chang, professor and chair of the Department of Neurological Surgery at the University of California, San Francisco (UCSF), was published in Current Biology, revealing that specific patterns of insular cortex neural activity may be linked to, and potentially predict, anxiety responses. -
John Huguenard
Professor of Neurology and Neurological Sciences (Neurology Research), of Neurosurgery (Adult Neurosurgery) and, by courtesy, of Molecular and Cellular Physiology
On Leave from 02/16/2025 To 02/15/2026Current Research and Scholarly InterestsWe are interested in the neuronal mechanisms that underlie synchronous oscillatory activity in the thalamus, cortex and the massively interconnected thalamocortical system. Such oscillations are related to cognitive processes, normal sleep activities and certain forms of epilepsy. Our approach is an analysis of the discrete components (cells, synapses, microcircuits) that make up thalamic and cortical circuits, and reconstitution of components into in silico computational networks.
-
Keith Humphreys
Esther Ting Memorial Professor and Professor, by courtesy, of Health Policy
Current Research and Scholarly InterestsDr. Humphreys researches individual and societal level interventions for addictive and psychiatric disorders. He focuses particularly on evaluating the outcomes of professionally-administered treatments and peer-operated self-help groups (e.g., Alcoholics Anonymous), and, analyzing the impact of public policies touching addiction, mental health, public health, and public safety.
-
Ruth Huttenhain
Assistant Professor of Molecular and Cellular Physiology
Current Research and Scholarly InterestsMy group deciphers how G protein-coupled receptors decode extracellular cues into dynamic and context-specific cellular signaling networks to elicit diverse physiologic responses. We exploit quantitative proteomics to capture the spatiotemporal organization of signaling networks combined with functional genomics to study their impact on physiology.
-
Robert K. Jackler, MD
Edward C. and Amy H. Sewall Professor, Emeritus
Current Research and Scholarly InterestsSince the early 2000s, study of tobacco industry marketing has become my primary field of research. Motivated by the lack of a comprehensive and well-organized compendium of tobacco advertisements, and the relative paucity of scholarly research analyzing the marketing practices of the industry, I chose to focus my research on advertising. The overarching purpose of my research has been to reveal the behavior of the tobacco industry in recruiting and retaining its consumers with the goal of infor
-
Matthew O. Jackson
Eberle Professor of Economics and Senior Fellow at the Stanford Institute for Economic Policy Research
Biohttp://www.stanford.edu/~jacksonm/bio.html
-
Siddhartha Jaiswal
Associate Professor of Pathology
Current Research and Scholarly InterestsWe identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.
-
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Julia Kaltschmidt
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.
-
Tahereh Kamali
Instructor, Neurology & Neurological Sciences
Current Research and Scholarly InterestsAI for Healthcare, Neuroimaging, Biomarkers Development