Institute for Computational and Mathematical Engineering (ICME)
Showing 51-100 of 177 Results
-
Julia Gillespie
Director of Finance and Operations, Institute for Computational and Mathematical Engineering (ICME)
Current Role at StanfordI am the Director of Finance and Operations for the Institute for Computational Mathematics and Engineering within the School of Engineering.
-
Peter Glynn
Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance
-
Ashish Goel
Professor of Management Science and Engineering and, by courtesy, of Computer Science
BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.
-
Catherine Gorle
Associate Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering
Current Research and Scholarly InterestsGorle's research focuses on the development of predictive flow simulations to support the design of sustainable buildings and cities. Specific topics of interest are the coupling of large- and small-scale models and experiments to quantify uncertainties related to the variability of boundary conditions, the development of uncertainty quantification methods for low-fidelity models using high-fidelity data, and the use of field measurements to validate and improve computational predictions.
-
Leonidas Guibas
Paul Pigott Professor of Engineering and Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsGeometric and topological data analysis and machine learning. Algorithms for the joint analysis of collections of images, 3D models, or trajectories. 3D reconstruction.
-
Pat Hanrahan
Canon Professor in the School of Engineering and Professor of Electrical Engineering, Emeritus
BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.
-
Kari Hanson
Lecturer
BioKari is a former technology executive with a passion for entrepreneurship, innovation, business strategy and making the world a better place. Having worked as a coach, investor, advisor, board member and CFO, she enjoys empowering students and entrepreneurs to thrive in life, the classroom and the marketplace.
-
Jerry Harris
The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus
Current Research and Scholarly InterestsBiographical Information
Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.
Research
My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.
Teaching
I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.
Professional Activities
I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG. -
Trevor Hastie
John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.
-
Gianluca Iaccarino
Professor of Mechanical Engineering
Current Research and Scholarly InterestsComputing and data for energy, health and engineering
Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.
Multidisciplinary Teaching
I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results. -
Alexander Ioannidis
Affiliate, Biomedical Data Science
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)BioDr. Alexander Ioannidis is an Adjunct Professor in Computational and Mathematical Engineering, where he teaches machine learning and data science, and is a researcher in the Department of Biomedical Data Science at Stanford Medical School. He earned his Ph.D. from Stanford University in Computational and Mathematical Engineering together with an M.S. in Management Science and Engineering (Optimization). He graduated summa cum laude from Harvard University in Chemistry and Physics and earned an M.Phil at the University of Cambridge from the Department of Applied Math and Theoretical Physics in Computational Biology. His research focuses on the design of algorithms and application of computational methods for problems in genomics, clinical data science, and precision health with a particular focus on underrepresented populations in Oceania and Latin America.
-
Doug James
Professor of Computer Science and, by courtesy, of Music
Current Research and Scholarly InterestsComputer graphics & animation, physics-based sound synthesis, computational physics, haptics, reduced-order modeling
-
Antony Jameson
Professor (Research) of Aeronautics and Astronautics, Emeritus
BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.
-
Jikai Jin
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2023
BioI am currently a Ph.D. student of the The Institute for Computational and Mathematical Engineering (ICME) at Stanford university. Prior to joining Stanford, I obtained my bachelor degree in computational mathematics at the School of Mathematical Sciences, Peking University, fortunately having Prof. Liwei Wang as my research advisor. My research is highly interdisciplinary across machine learning, statistics, operations research. While primarily focusing on theoretical aspects, the ultimate goal of my research is to develop state-of-the-art solutions for important real-world problems.
-
Ramesh Johari
Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering
BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).
-
Riley Juenemann
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2021
BioThird-year Computational and Mathematical Engineering (ICME) PhD Candidate @ Stanford University passionate about research at the intersection of mathematics, computing, and biology.
-
Tasha Kim
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2023
BioTasha grew up in Oceania, Asia, North America, and currently lives in the bay area, California.
-
Peter K. Kitanidis
Professor of Civil and Environmental Engineering
BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.
-
Ava Kouhana
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2024
BioHi ! I am an ICME master's degree student at Stanford University. Prior to Stanford, I dedicated six months conducting research at Harvard under the supervision of Dr. Mengyu Wang, focusing primarily on Computer Vision tasks like Image Segmentation and Vision-Language Models. Before joining ICME , I have had the opportunity to work for six months supervised by Stanford Professor Craig Levin, researching the application of Diffusion Models for image super-resolution.
My research interests primarily revolve around computer vision, deep learning, and generative AI, with a growing interest for 3D modeling and video generation. -
Ellen Kuhl
Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation
-
Ching-Yao Lai
Assistant Professor of Geophysics
BioMy group attacks fundamental questions in ice-dynamics, geophysics, and fluid dynamics by integrating mathematical and machine-learned models with observational data. We use our findings to address challenges facing the world, such as advancing our scientific knowledge of ice dynamics under climate change. The length scale of the systems we are interested in varies broadly from a few microns to thousands of kilometers, because the governing physical principles are often universal across a range of length and time scales. We use mathematical models, simulations, and machine learning to study the complex interactions between fluids and elasticity and their interfacial dynamics, such as multiphase flows, flows in deformable structures, and cracks. We extend our findings to tackle emerging topics in climate science and geophysics, such as understand the missing physics that governs the flow of ice sheets in a warming climate. We welcome collaborations across disciplinary lines, from geophysics, engineering, physics, applied math to computer science, since we believe combining expertise and methodologies across fields is crucial for new discoveries.
-
Sanjiva Lele
Edward C. Wells Professor of the School of Engineering and Professor of Mechanical Engineering
BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.
-
Adrian Lew
Professor of Mechanical Engineering
BioProf. Lew's interests lie in the broad area of computational solid mechanics. He is concerned with the fundamental design and mathematical analysis of material models and numerical algorithms.
Currently the group is focused on the design of algorithms to simulate hydraulic fracturing. To this end we work on algorithms for time-integration embedded or immersed boundary methods. -
Zetian Li
Masters Student in Computational and Mathematical Engineering, admitted Autumn 2024
Current Research and Scholarly InterestsStatistical Learning, Machine Learning, Bayesian Statistics, Probability Theory
-
Christian Linder
Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering
BioChristian Linder is a Professor of Civil and Environmental Engineering and, by courtesy, of Mechanical Engineering. Through the development of novel and efficient in-house computational methods based on a sound mathematical foundation, the research goal of the Computational Mechanics of Materials (CM2) Lab at Stanford University, led by Dr. Linder, is to understand micromechanically originated multi-scale and multi-physics mechanisms in solid materials undergoing large deformations and fracture. Applications include sustainable energy storage materials, flexible electronics, and granular materials.
Dr. Linder received his Ph.D. in Civil and Environmental Engineering from UC Berkeley, an MA in Mathematics from UC Berkeley, an M.Sc. in Computational Mechanics from the University of Stuttgart, and a Dipl.-Ing. degree in Civil Engineering from TU Graz. Before joining Stanford in 2013 he was a Junior-Professor of Micromechanics of Materials at the Applied Mechanics Institute of Stuttgart University where he also obtained his Habilitation in Mechanics. Notable honors include a Fulbright scholarship, the 2013 Richard-von-Mises Prize, the 2016 ICCM International Computational Method Young Investigator Award, the 2016 NSF CAREER Award, and the 2019 Presidential Early Career Award for Scientists and Engineers (PECASE).