School of Humanities and Sciences
Showing 1-100 of 131 Results
-
Christopher O. Barnes
Assistant Professor of Biology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsResearch in our lab is aimed at defining the structural correlates of broad and potent antibody-mediated neutralization of viruses. We combine biophysical and structural methods (e.g., cryo-EM), protein engineering, and in vivo approaches to understand how enveloped viruses infect host cells and elicit antigen-specific immune responses. We are particularly interested in the co-evolution of HIV-1 and broadly-neutralizing IgG antibodies (bNAbs), which may hold the key to the development of an effective HIV-1 vaccine. In addition, we are investigating antibody responses to SARS-CoV-2 and related zoonotic coronaviruses (CoV), with the related goal of developing broadly-protective immunotherapies and vaccines against variants of concern and emerging CoV threats.
HIV-1; SARS-CoV-2; coronaviruses; cryo-EM; crystallography; vaccines; directed evolution -
Kathryn Barton
Associate Professor, Biology
Consulting Professor, BiologyCurrent Research and Scholarly InterestsPlants make new leaves and stems from clusters of undifferentiated cells located at the tips of branches. These cell clusters are called apical meristems. We study transcription factors that control growth and development of apical meristems. Our studies include plants growing in environments rich in water and nutrients as well as in poor environments. The deeper knowledge of plant development gained from these studies will ultimately help increase food security in a changing environment.
-
Dominique Bergmann
Shirley R. and Leonard W. Ely, Jr. Professor of the School of Humanities and Sciences
Current Research and Scholarly InterestsWe use genetic, genomic and cell biological approaches to study cell fate acquisition, focusing on cases where cell fate is correlated with asymmetric cell division.
-
Barbara Block
Charles and Elizabeth Prothro Professor of Marine Sciences, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment
On Leave from 01/01/2025 To 03/31/2025Current Research and Scholarly InterestsThermal physiology, open ocean predators, ecological physiology and tuna biology
-
Carol Boggs
Bing Director in Human Biology, Emerita
Current Research and Scholarly InterestsI am interested in how environmental variation affects life history traits, population structure and dynamics, and species interactions in ecological and evolutionary time, using Lepidoptera.
-
Adrien Burlacot
Assist Prof (By Courtesy), Biology
BioAdrien Burlacot is an algal physiologist specialized in the study of photosynthesis and bioenergetics of algal cell. Adrien is a physicist by training, he received a BS and MSc in Engineering from the Ecole polytechnique (France) and a MSc in Plant Biology from the University of Paris-Saclay (France). He then obtained a PhD in Plant Science at the CEA Cadarache (France) from the Aix-Marseille University (France) where he studied the regulations of the photosynthetic electron flow in green microalgae. After a postdoctoral position in 2021 at the University of California, Berkeley (USA) with Krishna K. Niyogi were he studied photoprotection in plants and algae, he started his lab at the Carnegie Institution for Science at Stanford on fall 2021.
Microalgal photosynthesis is fixing annually ten times more CO2 than what humans reject. Acclimation to abiotic stress is a major driving force of microalgal community structure and productivity. Adrien investigates how microalgal photosynthesis dynamically acclimates to fluctuations in environmental parameters like light, CO2 or temperature. He will be using and developing high throughput screens based on quantitative chlorophyll fluorescence to understand the dynamics of photosynthesis. Adrien aims at unravelling the network of photosynthesis acclimatory genes and their bioenergetic role in the cell. He wants to use this knowledge and the new tools developed to propose new ways of harnessing photosynthesis for a more sustainable world. -
Xiaoke Chen
Associate Professor of Biology
Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.
-
Ching Chieh Chou
Basic Life Research Scientist, Biology
Current Research and Scholarly InterestsI am interested in the cellular strategies to regulate protein folding, transport and aggregation, and the pathogenic pathways leading to proteome remodeling in age-related neurodegenerative diseases. I use molecular imaging, cell reprogramming and multi-omics technologies to address these questions with importance to the aging and neuroscience field.
-
Jonas Cremer
Assistant Professor of Biology
Current Research and Scholarly InterestsWe are a highly interdisciplinary research team, joined in our desire to better understand microbial life. To elucidate how bacterial cells accumulate biomass and grow, we work with the model organism Escherichia coli. We further focus on gut bacteria and their interactions with the human host. Our approaches combine quantitative experimentation and mathematical modeling.
-
Larry Crowder
Edward Ricketts Provostial Professor, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology and of Environmental Social Sciences
Current Research and Scholarly InterestsEcology, conservation, fisheries, protected species, ecosystem-based management
-
Martha S. Cyert
Dr. Nancy Chang Professor
Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.
-
Gretchen C. Daily
Bing Professor of Environmental Science and Senior Fellow at the Woods Institute for the Environment and, by courtesy, at the Freeman Spogli Institute for International Studies
Current Research and Scholarly InterestsLand use, biodiversity dynamics, ecosystem services
-
Barnabas Daru
Assistant Professor of Biology and Center Fellow, by courtesy, at the Woods Institute for the Environment
BioBarnabas Daru is an Assistant Professor of Biology. He is interested in the ecology and biogeography of plants across ecological scales. He studied botany in Johannesburg, and was a postdoctoral researcher at Harvard, where he worked on new uses of herbarium specimens for understanding plant ecology and evolution in the Anthropocene, the epoch of profound human impact on Earth. Current research in the Daru lab addresses the role of phylogeny in: 1) understanding how species are distributed, 2) conserving unique communities, and 3) understanding changing distributions in the Anthropocene.
-
Giulio De Leo
Professor of Oceans, of Earth System Science, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy of Biology
Current Research and Scholarly InterestsI am a theoretical ecologist mostly interested in investigating factors and processes driving the dynamics of natural and harvested populations and on how to use this knowledge to inform practical management. I have worked broadly on life histories analysis, fishery management, dynamics and control of infectious diseases and environmental impact assessment.
-
José R. Dinneny
Professor of Biology
Current Research and Scholarly InterestsThe biology of root systems is governed by both micro-scale and systemic signaling that allows the plant to integrate these complex variables into growth and branching decisions that ultimately determine the efficiency resources are captured. Research in my lab is aimed at understanding the response of roots to water-limiting conditions and is exploring this process at different organizational scales from the individual cell type to the level of the whole plant.
-
Rodolfo Dirzo
Associate Dean for Integrative Initiatives in Environmental Justice, Bing Prof in Environmental Science, Professor of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsEcological and evolutionary aspects of plant-animal interactions, largely but not exclusively, in tropical forest ecosystems.
Conservation biology in tropical ecosystems.
Studies on biodiversity.
Education, at all levels, on scientific practice, ecology and biodiversity conservation. -
Scott Dixon
Associate Professor of Biology
On Leave from 01/01/2025 To 03/31/2025Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.
-
Paul Ehrlich
Bing Professor of Population Studies, Emeritus
Current Research and Scholarly InterestsThe role of the social sciences in dealing with global change
-
Jessica Feldman
Associate Professor of Biology
Current Research and Scholarly InterestsCell differentiation requires cells to polarize, translating developmental information into cell-type specific arrangements of intracellular structures. The major goal of the research in my laboratory is to understand how cells build these functional intracellular patterns during development, specifically focusing on the molecules and mechanisms that build microtubules at cell-type specific locations and the polarity cues that guide this patterning in epithelial cells.
-
Marcus Feldman
Burnet C. and Mildred Finley Wohlford Professor
Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China
-
Russell D. Fernald
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)
-
Chris Field
Melvin and Joan Lane Professor of Interdisciplinary Environmental Studies, Director, Woods Institute for the Environment and Professor of Earth System Science, of Biology and Senior Fellow at Woods
Current Research and Scholarly InterestsResearch
My field is climate-change science, and my research emphasizes human-ecological interactions across many disciplines. Most studies include aspects of ecology, but also aspects of law, sociology, medicine, or engineering. -
Hunter Fraser
Professor of Biology
Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.
Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. -
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Tadashi Fukami
Professor of Biology and of Earth System Science
Current Research and Scholarly InterestsEcological and evolutionary community assembly, with emphasis on understanding historical contingency in community structure, ecosystem functioning, biological invasion and ecological restoration, using experimental, theoretical, and comparative methods involving bacteria, protists, fungi, plants, and animals.
-
Deborah M Gordon
Paul S. and Billie Achilles Professor of Environmental Biology
Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.
-
Or Gozani
Dr. Morris Herzstein Professor
On Leave from 01/01/2025 To 06/30/2025Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.
-
Arthur Grossman
Visiting Professor (By courtesy), Biology
Professor (By Courtesy), BiologyCurrent Research and Scholarly InterestsHow photosynthetic organisms perceive and respond to their environment
-
Elizabeth Hadly
Paul S. and Billie Achilles Professor of Environmental Biology and Professor of Earth System Science, Emerita
Current Research and Scholarly InterestsElizabeth Hadly and her lab probe how perturbations such as climatic change and human modification of the environment influence the evolution and ecology of animals.
-
Philip C. Hanawalt
Dr. Morris Herzstein Professor in Biology, Emeritus
Current Research and Scholarly InterestsMy current interest includes two principal areas:
1. The molecular basis for diseases in which the pathway of transcription-coupled DNA repair is defective, including Cockyne syndrome (CS) and UV-sensitive syndrome (UVSS). Patients are severely sensitive to sunlight but get no cancers. See Hanawalt & Spivak, 2008, for review.
2. Transcription arrest by guanine-rich DNA sequences and non-canonical secondary structures. Transcription collisions with replication forks. -
H. Craig Heller
Lorry I. Lokey/Business Wire Professor
Current Research and Scholarly InterestsNeurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.
-
Jamie Imam
Advanced Lecturer
BioDr. Jamie Imam received her bachelor's degree in Biological Sciences and Psychology from Carnegie Mellon University and her Ph.D. in Genetics from the Stanford School of Medicine. In addition to teaching, Jamie is the Director of the Honors Program in Biology and a Lecturer Consultant with the Center for Teaching and Learning. When she is not teaching or doing science outreach, she enjoys reading, baking and spending time outdoors with her family.
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease -
Patricia Jones
The Dr. Nancy Chang Professor, Emerita
Current Research and Scholarly InterestsDr. Jones' research focused on genetic, molecular, and cellular mechanisms that regulate immune responses. She hHer most recent work was centered on the regulation of innate immune responses that are triggered by conserved microbial components. As these responses can be harmful they are highly regulated in their occurrence, magnitude, and duration. Her lab discovered a novel mechanism that negatively regulates innate responses, mediated by the phosphatase calcineurin.
-
Martin Jonikas
Assistant Professor, Biology
Current Research and Scholarly InterestsPhotosynthesis provides energy for nearly all life on Earth. Our lab aims to dramatically accelerate our understanding of photosynthetic organisms by developing and applying novel functional genomics strategies in the green alga Chlamydomonas reinhardtii. In the long run, we dream of engineering photosynthetic organisms to address the challenges that our civilization faces in agriculture, health and energy.
-
Ron Kopito
Professor of Biology
Current Research and Scholarly InterestsOur laboratory use state-of-the-art cell biological, genetic and systems-level approaches to understand how proteins are correctly synthesized, folded and assembled in the mammalian secretory pathway, how errors in this process are detected and how abnormal proteins are destroyed by the ubiquitin-proteasome system.
-
Xing Liang
Basic Life Res Scientist
Current Research and Scholarly InterestsMechanism of MT polarity establishment during PVD neuron dendrite outgrowing in C. elegans.
-
Sharon R. Long
William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry
Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis
-
Christopher Lowe
Professor of Biology
Current Research and Scholarly InterestsEvolution and development, specifically the evolution of the deuterostomes
-
Liqun Luo
Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology
Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.
-
Sriparna Majumdar
Basic Life Res Scientist
Current Research and Scholarly InterestsVisual and Cognitive Neuroscience, Aging
-
Susan K. McConnell
Susan B. Ford Professor, Emerita
Current Research and Scholarly InterestsSusan McConnell has studied the cellular and molecular mechanisms that underlie the development of the mammalian cerebral cortex. Her work focused on the earliest events that pattern the developing forebrain, enable neural progenitors to divide asymmetrically to generate young neurons, propel the migration of postmitotic neurons outward into their final positions, and sculpt the fates and phenotypes of the neurons as they differentiate.
-
Fiorenza Micheli
David and Lucile Packard Professor of Marine Science, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsDr Fiorenza Micheli is a marine ecologist and conservation biologist conducting research and teaching at the Hopkins Marine Station of Stanford University. Micheli’s research focuses on the processes shaping marine communities and incorporating this understanding in the management and conservation of marine ecosystems. She is a Pew Fellow, a fellow of the California Academy of Science and the Aldo Leopold Leadership Program, and past president of the Western Society of Naturalists.
-
Harold Mooney
Paul S. and Billie Achilles Professor in Environmental Biology, Emeritus
BioStanford ecologist Harold “Hal” Mooney is the Paul S. Achilles Professor of Environmental Biology, emeritus, in the School of Humanities and Science’s Department of Biology and senior fellow, emeritus, with the Stanford Woods Institute as well as the Freeman Spogli Institute for International Studies. Mooney helped pioneer the field of physiological ecology and is an internationally recognized expert on environmental sciences. Through his six-decade academic career, Mooney has demonstrated how plant species and groups of species respond to their environments and developed research methodologies for assessing how plants interact with their biotic environments. To date he has authored more than 400 scientific books, papers and articles.
Mooney's recent research focuses on assessing the impacts of global environmental change on terrestrial ecosystems, especially on ecosystem function, productivity and biodiversity. Recent research includes studying the environmental and social consequences of industrialized animal production systems and examining factors that promote the invasion of non-indigenous plant species.
Mooney has played an international leadership role in numerous research settings, especially with problems related to biodiversity, invasive species, global warming and Mediterranean climates. In addition, he has been active in building up worldwide communities and networks of ecologists and scientists in other disciplines and arranging international conferences on the environment. He played a central role in the International Geosphere-Biosphere Program (IGBP), building up an international organization of scientists and having an influential part in setting the guidelines for the formulation of environmental policies. He also has advanced numerous international research programs as Secretary General and Vice-President of the International Council for Science (ICSU).
Mooney earned his Ph.D. from Duke University in 1960 and started as an assistant professor at UCLA that same year. In 1968 he was recruited to Stanford University, where he was later appointed the Paul S. Achilles Professor of Environmental Biology in the School of Humanities and Science’s Department of Biology. A senior fellow with the Stanford Woods Institute as well as the Freeman Spogli Institute for International Studies, Mooney has led a wide range of national and international scientific activities related to environment and conservation.
Notable roles included coordinating the 1995 Global Biodiversity Assessment, co-chairing the Assessment Panel of the 2005 Millennium Ecosystem Assessment, establishing and leading the Global Invasive Species Program and serving as lead review editor for the ongoing global assessment of the Intergovernmental Platform on Biodiversity and Ecosystem Services. His many accolades and awards include the 1990 ECI Prize in terrestrial ecology, the 1992 Max Planck Research Award in biosciences, the 1996 Eminent Ecologist Award from the Ecological Society of America, the 2000 Nevada Medal, the 2002 Blue Planet Prize, the 2007 Ramon Margalef Prize in Ecology, the 2008 Tyler Prize, the 2008 BBVA Foundation Award for Biodiversity Conservation, and the 2010 Volvo Environment Prize. -
Erin Mordecai
Associate Professor of Biology and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsOur research focuses on the ecology of infectious disease. We are interested in how climate, species interactions, and global change drive infectious disease dynamics in humans and natural ecosystems. This research combines mathematical modeling and empirical work. Our main study systems include vector-borne diseases in humans and fungal pathogens in California grasses.
-
Ashby Morrison
Associate Professor of Biology
Current Research and Scholarly InterestsOur research interests are to elucidate the contribution of chromatin to mechanisms that promote genomic integrity.
-
Mary Beth Mudgett
Senior Associate Dean for the Natural Sciences and Susan B. Ford Professor
Current Research and Scholarly InterestsMy laboratory investigates how bacterial pathogens employ proteins secreted by the type III secretion system (TTSS) to manipulate eukaryotic signaling to promote disease. We study TTSS effectors in the plant pathogen Xanthomonas euvesicatoria, the causal agent of bacterial spot disease of pepper and tomato. For these studies, we apply biochemical, cell biological, and genetic approaches using the natural hosts and model pathosystems.
-
William Nelson
Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine, Emeritus
Current Research and Scholarly InterestsOur research objectives are to understand the cellular mechanisms involved in the development and maintenance of epithelial cell polarity. Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs.
-
Lauren O'Connell
Associate Professor of Biology
Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.
-
Stephen Palumbi
Jane and Marshall Steel Jr. Professor of Marine Sciences, Professor of Oceans and of Biology
Current Research and Scholarly InterestsWe're interested in ecological, evolutionary, and conservation questions related to marine (and sometimes terrestrial) organisms and ecosystems. We use evolutionary genetics and molecular ecology techniques, and our fieldwork takes us all around the world. Currently, we're studying coral diversity, the adaptive potential of corals in response to climate change, the movement of organisms between marine reserves, genetic changes in abalone in response to environmental.
-
Chenjie Pan
Basic Life Res Scientist
BioI obtained my PhD from Dr. Xiaodong Wang's lab, National Institute of Biological Sciences, Beijing/Tsinghua University. My major work during PhD is on the biochemical mechanism of myelin breakdown. I have expertise in in-tissue immunoprecipitation and pain behavior. Now I am working on axon guidance, degeneration, and plasticity in Dr. Marc Tessier-Lavigne's lab in Department of Biology.
-
Jonathan Payne
Dorrell William Kirby Professor, Senior Associate Dean for Faculty Affairs, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsMy goal in research is to understand the interaction between environmental change and biological evolution using fossils and the sedimentary rock record. How does environmental change influence evolutionary and ecological processes? And conversely, how do evolutionary and ecological changes affect the physical environment? I work primarily on the marine fossil record over the past 550 million years.
-
Kabir Peay
Director of the Earth Systems Program, Professor of Biology, of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsOur lab studies the ecological processes that structure natural communities and the links between community structure and the cycling of nutrients and energy through ecosystems. We focus primarily on fungi, as these organisms are incredibly diverse and are the primary agents of carbon and nutrient cycling in terrestrial ecosystems. By working across multiple scales we hope to build a 'roots-to-biomes' understanding of plant-microbe symbiosis.
-
Dmitri Petrov
Michelle and Kevin Douglas Professor in the School of Humanities and Sciences
Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation
-
Manu Prakash
Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology
BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.
-
Jonathan Pritchard
Bing Professor of Population Studies, Professor of Genetics and Biology
Current Research and Scholarly InterestsWe are interested in a broad range of problems at the interface of genomics and evolutionary biology. One current focus of the lab is in understanding how genetic variation impacts gene regulation and complex traits. We also have long-term interests in using genetic data to learn about population structure, history and adaptation, especially in humans.
FOR UP-TO-DATE DETAILS ON MY LAB AND RESEARCH, PLEASE SEE: http://pritchardlab.stanford.edu -
Kristy Red-Horse
Professor of Biology
Current Research and Scholarly InterestsCardiovascular developmental biology
-
Thomas Rogerson
Basic Life Research Scientist
Current Research and Scholarly InterestsAs a postdoctoral research fellow in the laboratory of Mark Schnitzer I am utilizing chronic, in vivo, fluorescence calcium-imaging combined with chemo and optogenetic manipulations to determine the mechanisms by which neuronal circuits and the ensembles of cells within them enable the encoding and recall of context-dependent memories.
-
Noah Rosenberg
Stanford Professor of Population Genetics and Society
Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics
-
Julia Salzman
Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes