School of Medicine
Showing 1-100 of 368 Results
-
Monther Abu-Remaileh
Assistant Professor of Chemical Engineering and of Genetics
Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.
-
Arash Alavi
Software Engineering Director, Genetics
Current Role at StanfordSoftware Engineering Director
-
Nicolas Altemose
Assistant Professor of Genetics
Current Research and Scholarly InterestsThe Altemose Lab develops new experimental and analytical tools to study how chromatin proteins organize and regulate complex regions of the human genome.
-
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for Human-Centered AI and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Euan A. Ashley
Roger and Joelle Burnell Professor of Genomics and Precision Health, Arthur L. Bloomfield Professor of Medicine and Professor of Genetics, of Biomedical Data Science and, by courtesy, of Pathology
Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.
-
Laura Attardi
Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics
Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.
-
Mohan Babu Budikote Venkatappa
Basic Life Research Scientist, Genetics
Current Research and Scholarly InterestsLongitudinal host-microbial omics profiling and wearables-based monitoring to understand Autism Spectrum Disorder (ASD), its heterogeneity, and predictors of the diverse symptoms that ASD individuals experience.
-
Amir Bahmani
Instructor, Genetics
BioAmir Bahmani is a Genetics Instructor and Director of Stanford's Deep Data Research Center (https://deepdata.stanford.edu ) at the Stanford School of Medicine. He has worked on distributed and parallel computing applications since 2008. Amir is currently an active researcher in the VA Million Veteran Program (MVP), Human Tumor Atlas Network (HTAN), Human BioMolecular Atlas Program (HuBMAP), Stanford Metabolic Health Center (MHC), Integrated Personal Omics Profiling (iPOP), and Bridge to Artificial Intelligence (Bridge2AI).
His team has designed and developed several notable cloud-scale frameworks, including the Personal Health Dashboard (PHD), cloud-based cost-saving platforms such as Hummingbird and Swarm, and the MyPHD platform, which now has over 12,000 participants and hosts more than 37 studies. His team also created Stanford Data Ocean (SDO), an innovative platform for educating engineers and biologists. SDO is the first serverless multi-omics and wearables data platform used for education and training.
Since 2017, he has trained more than 30 graduate interns (engineers and designers) from outside the School of Medicine, engaging them in the field of medicine. His course has been offered to physicians, biologists, engineers, and designers, earning him recognition as the recipient of Stanford’s 2024 Walter J. Gores Award for Excellence in Teaching. In 2023, he received the Terman Mentorship Award for mentoring Terman Fellow Ryan Park (top 1%), who transitioned to a Genetics PhD program inspired by Amir’s course. Committed to accessibility in education, Amir created a first-of-its-kind scholarship for under-resourced communities at Stanford, providing his course free of charge—along with Genetics certificates—to over 4,500 students from under-resourced backgrounds across 104 countries and all 50 U.S. states. -
Julie Baker
Professor of Genetics
Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.
-
Maria Barna
Associate Professor of Genetics
Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.
-
Greg Barsh
Professor of Genetics and of Pediatrics, Emeritus
Current Research and Scholarly InterestsGenetics of color variation
-
Michael Bassik
Associate Professor of Genetics
Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.
-
Jon Bernstein
Professor of Pediatrics (Genetics) and, by courtesy, of Genetics
Current Research and Scholarly InterestsMy research is focused on the diagnosis, discovery and delineation of rare genetic conditions with a focus on neurodevelopmental disorders. This work includes the application of novel computational methods and multi-omics profiling (whole genome sequencing, long-read DNA sequencing, RNA sequencing, methylomics, metabolomics). I additionally participate in an interdisciplinary project to develop induced pluripotent stem cell and assembloid models of genetic neurodevelopmental disorders.
-
Ami Bhatt
Professor of Medicine (Hematology) and of Genetics
Current Research and Scholarly InterestsThe Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.
-
Anne Brunet
Michele and Timothy Barakett Endowed Professor
Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.
-
Mai Ly Tran Burke
Masters Student in Human Genetics and Genetic Counseling, admitted Autumn 2024
BioI am Mai Ly Burke, a Master's student in Human Genetics and Genetic Counseling. Having grown up in Vietnam—a country that grapples with many health challenges—my work is fueled by a genuine passion for giving back to my community. I was inspired to enter the genetic counseling field by my volunteer work supporting children with cancer in public hospitals in Vietnam, where I saw the urgent need for improved access to healthcare. My goal is to facilitate the introduction of the genetic counseling field to Vietnam, where there is a stark shortage of genetic experts, to improve health outcomes in my community.
Please feel free to reach out to connect! I always want to meet others who share my passion for genetics, global health, and health equity. -
Sonia Bustos
Ph.D. Student in Genetics, admitted Summer 2022
OTL Intern, Office of Technology Licensing (OTL)Current Role at StanfordGraduate student in the Genetics Department
-
Michele Calos
Professor of Genetics, Emerita
Current Research and Scholarly InterestsMy lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.
We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.
We are working on 3 forms of muscular dystrophy.
We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells. -
MaryAnn Campion
Professor (Teaching) of Genetics
Current Research and Scholarly InterestsMy primary research interests include 1) genetics education, 2) genetic counseling access, service delivery, and psychosocial assessment, 3) professional development, faculty vitality, and burnout.
-
Howard Y. Chang, MD, PhD
Virginia and D. K. Ludwig Professor of Cancer Research, Professor of Genetics and, by courtesy, of Pathology
On Leave from 12/16/2024 To 12/15/2026Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.
-
Mike Cherry
Professor (Research) of Genetics, Emeritus
Current Research and Scholarly InterestsMy research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.
-
Stanley N. Cohen, MD
Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine
On Partial Leave from 06/04/2025 To 07/16/2026Current Research and Scholarly InterestsWe study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.
-
Le Cong
Associate Professor of Pathology (Pathology Research) and of Genetics
Current Research and Scholarly InterestsOur lab develops gene-editing technologies like novel CRISPR systems and large gene insertion techniques for gene&cell therapy. We also leverages these gene-editing tools for single-cell functional screening, to probe molecular mechanisms of cancer and immunological diseases. To accelerate our work, we integrate AI and machine learning to design and evolve gene-editing proteins/RNAs in silico, pushing the frontier that bridges computational and experimental biology.
-
David Cox
Assistant Professor of Genetics and, by courtesy, of Medicine (Hematology)
BioDavid Cox is an Assistant Professor of Genetics and by courtesy of Medicine (Hematology) at Stanford University and Principal Investigator of the Cox Lab (coxlab.bio), which is opening in July 2025. He is also a ChEM-H Institute Scholar and Chan Zuckerberg Biohub Investigator.
He completed his undergraduate studies in biology at Stanford University, where he worked with Irving Weissman on understanding how the innate immune system recognizes cancer cells. He then entered the Harvard-MIT MD-PhD program, earning his MD from the Harvard-MIT program in Health Sciences and Technology (HST) and his PhD in biology from MIT. His doctoral dissertation with Feng Zhang focused on the discovery and development of CRISPR-Cas enzymes as novel DNA and RNA editing tools. During his final year of medical school, he worked as a visiting scientist with David Baker, where he initiated efforts to design sequence-specific DNA binding proteins de novo.
Following medical school, Cox completed internal medicine residency and a clinical fellowship in hematology at Stanford, where he concurrently conducted postdoctoral research in Rhiju Das's lab. In the Das lab, he fine-tuned large language models for RNA structure prediction and developed new methods for highly multiplexed detection of RNA-protein interactions.
His current list of publications and patents is available here: https://scholar.google.com/citations?user=ZohHoFYAAAAJ&hl=en&oi=ao -
Christina Curtis
RZ Cao Professor and Professor of Genetics
Current Research and Scholarly InterestsThe Curtis laboratory for Cancer Computational and Systems Biology is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.
-
Kyle Gabriel Daniels
Assistant Professor of Genetics and, by courtesy, of Neurosurgery (Adult Neurosurgery)
BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.
Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.
The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells. -
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Ashley DuNova
Affiliate, Genetics
BioCollaborating with Dr. Michael Snyder and the Snyder Lab.
ORCID: https://orcid.org/0000-0002-1478-7065 -
Jesse Engreitz
Assistant Professor of Genetics
Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.
We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease. -
Rongxin Fang
Assistant Professor of Neurosurgery and, by courtesy, of Genetics
BioRongxin Fang received his Ph.D. in Bioinformatics and Systems Biology from the University of California, San Diego, under the mentorship of Bing Ren (2015–2019). During his doctoral training, he developed high-throughput genomic technologies and computational tools to map the structure and activity of the mammalian genome at large scale and single-cell resolution. He then applied these approaches to investigate how cis-regulatory elements - such as enhancers - control gene expression and drive the diverse transcriptional programs underlying cellular diversity in the mammalian brain. As an HHMI–Damon Runyon Postdoctoral Fellow at Harvard University (2019–2024), he worked with Xiaowei Zhuang. Rongxin developed and applied genome-scale, volumetric 3D transcriptome imaging methods to map the molecular and cellular architecture of the mammalian brain across evolution and aging. He also contributed to the collaboration with Adam Cohen and Catherine Dulac to integrate transcriptome imaging with functional neuronal imaging, identifying neuronal populations in the animal brain that underlie specific brain functions.