School of Medicine
Showing 1-100 of 356 Results
-
Monther Abu-Remaileh
Assistant Professor of Chemical Engineering and of Genetics
Current Research and Scholarly InterestsWe study the role of the lysosome in metabolic adaptation using subcellular omics approaches, functional genomics and innovative biochemical tools. We apply this knowledge to understand how lysosomal dysfunction leads to human diseases including neurodegeneration, cancer and metabolic syndrome.
-
Arash Alavi
Senior Software Researcher and Engineer, Genetics
Current Role at StanfordSoftware Researcher and Engineer
-
Nicolas Altemose, DPhil, PhD
Assistant Professor, Genetics
BioNicolas Altemose is an incoming Assistant Professor of Genetics. He received a DPhil in statistical genetics from the University of Oxford and a PhD in bioengineering from UC Berkeley and UCSF. He then did postdoctoral research at UC Berkeley as an HHMI Hanna Gray Fellow. Opening in July 2023, the Altemose Lab will continue to develop new experimental and analytical tools to study how chromatin proteins organize and regulate complex regions of the human genome. For more information see www.altemoselab.org
-
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Euan A. Ashley
Associate Dean, School of Medicine, Roger and Joelle Burnell Professor of Genomics and Precision Health, Professor of Medicine (Cardiovascular Medicine), of Genetics, of Biomedical Data Science and, by courtesy, of Pathology
Current Research and Scholarly InterestsThe Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.
-
Laura Attardi
Catharine and Howard Avery Professor of the School of Medicine and Professor of Genetics
Current Research and Scholarly InterestsOur research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.
-
Mohan Babu Budikote Venkatappa
Postdoctoral Scholar, Genetics
Current Research and Scholarly InterestsLongitudinal host-microbial omics profiling and wearables-based monitoring to understand Autism Spectrum Disorder (ASD), its heterogeneity, and predictors of the diverse symptoms that ASD individuals experience.
-
Amir Bahmani
Stanford Lecturer and Director of Deep Data Research Center (DDRC), Genetics
BioAmir Bahmani is a Lecturer and Director of Stanford's Deep Data Research Center (https://deepdata.stanford.edu), the Research and Development Lead at Stanford Center for Genomics and Personalized Medicine (SCGPM) at Stanford School Medicine. He has been working on distributed and parallel computing applications since 2008. Currently, Amir is an active researcher in the VA Million Veteran Program (MVP), Human Tumor Atlas Network (HTAN), the Human BioMolecular Atlas Program (HuBMAP), Stanford Metabolic Health Center (MHC) and Integrated Personal Omics Profiling (iPOP).
-
Julie Baker
Professor of Genetics
Current Research and Scholarly InterestsWe examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.
-
Maria Barna
Associate Professor of Genetics
Current Research and Scholarly InterestsOur lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5’UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.
-
Greg Barsh
Professor of Genetics and of Pediatrics, Emeritus
Current Research and Scholarly InterestsGenetics of color variation
-
Michael Bassik
Associate Professor of Genetics
Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.
-
Jon Bernstein
Professor of Pediatrics (Genetics) and, by courtesy, of Genetics
On Partial Leave from 02/01/2023 To 11/12/2023Current Research and Scholarly InterestsMy research is focused on the diagnosis, discovery and delineation of rare genetic conditions with a focus of neurodevelopmental disorders. This work includes the application of novel computational methods and multi-omics profiling (whole genome sequencing, RNA sequencing, metabolomics). I additionally participate in an interdisciplinary project to develop induced pluripotent stem cell (iPSC) models of genetic neurodevelopmental disorders..
-
Ami Bhatt
Associate Professor of Medicine (Hematology) and of Genetics
Current Research and Scholarly InterestsThe Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.
-
Andrew Brooks
Postdoctoral Scholar, Genetics
BioPostdoctoral researcher in the Snyder Lab. My research focuses on the human gut microbiome, and I am involved in multiple multiomic projects investigating how physiological systems through the human body interact across different lifestyles and health states. I perform both wet and dry lab aspects of multiomics analyses, and am involved in two coronavirus research projects including handling of positive SARS-COV-2 samples.
-
Anne Brunet
Michele and Timothy Barakett Endowed Professor
Current Research and Scholarly InterestsOur lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.
-
Michele Calos
Professor of Genetics, Emerita
Current Research and Scholarly InterestsMy lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.
We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.
We are working on 3 forms of muscular dystrophy.
We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells. -
MaryAnn Campion
Professor (Teaching) of Genetics
Current Research and Scholarly InterestsMy research interests includes genetics education, genetic counseling access and service delivery, professional development, and faculty vitality and burnout.
-
Howard Y. Chang, MD, PhD
Virginia and D. K. Ludwig Professor of Cancer Research and Professor of Genetics
Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.
-
Mike Cherry
Professor (Research) of Genetics
Current Research and Scholarly InterestsMy research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.
-
Stanley N. Cohen, MD
Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine
Current Research and Scholarly InterestsWe study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.
-
Le Cong
Assistant Professor of Pathology (Pathology Research) and of Genetics
BioDr. Cong's group is developing novel technology for genome editing and single-cell genomics, leveraging scalable methods inspired by data science. His group has a focus on using these gene-editing tools to study immunological and neurological diseases. His work has led to one of the first FDA-approved clinical trials using CRISPR/Cas9 gene-editing for in vivo gene therapy. More recently, his group invented tools for cleavage-free large gene insertion via mining microbial recombination protein, and developed single-cell tracking approach for studying cancer biology and immunology. Dr. Cong is a recipient of the NIH/NHGRI Genomic Innovator Award, a Baxter Foundation Faculty Scholar, and has been selected by Clarivate Web of Science as a Highly Cited Researcher.
-
Christina Curtis
Professor of Medicine (Oncology), of Genetics and of Biomedical Data Science
Current Research and Scholarly InterestsThe Curtis laboratory for Cancer Computational and Systems Biology is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Jesse Engreitz
Assistant Professor of Genetics
Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.
We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease. -
Graham Erwin
Postdoctoral Scholar, Genetics
BioGraham Erwin, Ph.D., is a Stanford Cancer Institute Postdoctoral Fellow in the Department of Genetics at Stanford University. He is a molecular, chemical, and genome biologist elucidating the functional role of repetitive DNA sequences. This work is guiding the design of new therapeutics and diagnostics for human disease. Graham is currently supported by an NIH Pathway to Independence Award (K99/R00). He received his Ph.D. from the University of Wisconsin–Madison, where he was a co-inventor of synthetic transcription factors to treat devastating neurodegenerative diseases. An analog of their prototype molecule, Syn-TEF1, is currently in human clinical trials. He has published first-author papers in high-impact journals including PNAS and Science. Graham is an advocate for first-generation college students and for programs that support mental health and psychological thriving on college campuses. He is a guest lecturer in Wellness Education at Stanford.
-
Yanan Feng
Sr. Research Scientist - Basic Life, Genetics
Current Role at StanfordSenior Research Scientist, Department of Genetics, Dr. Stanley N. Cohen's lab
-
Andrew Fire
George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".
-
James Ford
Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNAdamage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.
-
Polly Fordyce
Associate Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.
-
Uta Francke
Professor of Genetics and of Pediatrics, Emerita
Current Research and Scholarly InterestsFunctional consequences and pathogenetic mechanisms of mutations and microdeletions in human neurogenetic syndromes and mouse models. Integration of genomic information into medical care.
-
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Margaret T. Fuller
Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.