School of Humanities and Sciences
Showing 51-100 of 171 Results
-
Aharon Kapitulnik
Theodore and Sydney Rosenberg Professor of Applied Physics and Professor of Physics
On Leave from 01/01/2025 To 06/30/2025BioAharon Kapitulnik is the Theodore and Sydney Rosenberg Professor in Applied Physics at the Departments of Applied Physics and Physics at Stanford University. His research focuses on experimental condensed matter physics, while opportunistically, also apply his methods to tabletop experimental studies of fundamental phenomena in physics. His recent studies cover a broad spectrum of phenomena associated with the behavior of correlated and disordered electron systems, particularly in reduced dimensions, and the development of effective instrumentation to detect subtle signatures of physical phenomena.
Among other recognitions, his activities earned him the Alfred P. Sloan Fellowship (1986-90), a Presidential Young Investigator Award (1987-92), a Sackler Scholar at Tel-Aviv University (2006), the Heike Kamerlingh Onnes Prize for Superconductivity Experiment (2009), a RTRA (Le Triangle de la Physique) Senior Chair (2010), and the Oliver Buckley Condensed Matter Prize of the American Physical Society (2015). Aharon Kapitulnik is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science and a member of the National Academy of Sciences. Kapitulnik holds a Ph.D. in Physics from Tel-Aviv University (1984). -
Brian Lantz
Professor (Research) of Applied Physics
Current Research and Scholarly InterestsMeasure gravitational waves
-
Benjamin Lev
Professor of Applied Physics and of Physics
Current Research and Scholarly InterestsLevLab is a joint AMO & CM experimental group that explores the question: Can new classes of states and phases of quantum matter be created far away from equilibrium, and if so, what do we learn? We use our new technique, confocal cavity QED, to both engineer out-of-equilibrium quantum gases and 2D materials and to image and control their new properties.
-
Qitong Li
Postdoctoral Scholar, Applied Physics
BioI am an experimental and applied physicist, focusing on extreme light-matter interaction at the nanoscale. I am currently working with Prof. Tony F. Heinz as a postdoctoral researcher in the Department of Applied Physics at Stanford University. Before my current position, I obtained my Ph.D. in Materials Science and Engineering from Stanford University in 2022 under the guidance of Prof. Mark L. Brongersma and my B.Sc. in Physics from Peking University in 2016.
My research concentrates on developing platforms with state-of-the-art tailored (optically resonant) nanostructures to achieve improved control over the photon-electron interaction at the nanoscale. This immediately allows us to create novel photonic and optoelectronic device concepts by coupling free-space lights into a series of well-engineered quantized optical modes and co-engineering electronic and optical components together. We therefore foresee a system-level revolution in industry enabled by nanotechnology. On the other hand, by providing a non-trivial and tunable optical, electrical, and mechanical nano-environment, this platform also fundamentally functions as a versatile tool and offers a new degree of freedom to better probe, study, and control various quantum properties and excitations in solids, especially those enhanced ones in low-dimensional materials. This will ultimately lead us to have a clearer understanding of unconventional phenomena in quantum materials and start to utilize them in a more controllable way. -
Kaden Loring
Ph.D. Student in Applied Physics, admitted Autumn 2021
BioKaden Loring began his PhD in Applied Physics at Stanford University in September 2021. Loring's research specialization is laser-based diagnostics for fusion-relevant plasmas. Loring received his bachelor's degree from the University of Florida in May 2020 in Physics. He is passionate about research aimed at the development of nuclear fusion for energy. In his free-time, Loring enjoys spending time in nature whenever possible.
-
W. E. Moerner
Harry S. Mosher Professor and Professor, by courtesy, of Applied Physics
Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.