Independent Labs, Institutes, and Centers (Dean of Research)


Showing 1-100 of 125 Results

  • Xinru Ma

    Xinru Ma

    Research Scholar

    BioXinru Ma’s research focuses on nationalism, great power politics, and East Asian security with a methodological focus on formal and computational methods. More broadly, Xinru’s research encompasses three main objectives: Substantively, she aims to better theorize and enhance cross-country perspectives on critical phenomena such as nationalism and its impact on international security; Methodologically, she strives to improve measurement and causal inference based on careful methodologies, including formal modeling and computational methods like natural language processing; Empirically, she challenges prevailing assumptions that inflate the perceived risk of militarized conflicts in East Asia, by providing original data and analysis rooted in local knowledge and regional perceptions. Her work has been published in the Journal of East Asian Studies, The Washington Quarterly, the Journal of Global Security Studies, and the Journal of European Public Policy, and in edited volumes through Palgrave. Her co-authored book - Asian Power Transitions: Internal Challenges, Common Conjecture, and the Future of U.S.-China Relations - is forthcoming with the Columbia University Press.

    At SNAPL, Xinru will lead the research group in collaborative projects that focus on U.S.-Asia relations. One of the projects will contrast the rhetoric and debates in US politics surrounding the historical phenomenon of "Japan bashing" and the current perception of a "China threat.” By applying automated text analysis and qualitative analysis to textual data from various sources such as congressional hearings and presidential speeches, this project uncovers the similarities, differences, and underlying factors driving the narratives surrounding US-Asia relations. She will also provide mentorship to student research assistants and research associates.

    Before joining SNAPL, Xinru was an assistant professor at the School of International Relations and Diplomacy at Beijing Foreign Studies University, where she led the Political Science Research Lab, a lab committed to closing the gender gap in computational methods and political science research by offering big data methods training and professionalization workshops to students. Prior to that, Xinru was a post-doctoral fellow at the Center for International Security and Cooperation at Stanford University (2019-2020), and a pre-doctoral fellow at the Department of Political Science at Vanderbilt University (2018-2019). In 2023, Xinru was selected as an International Strategy Forum fellow by Schmidt Futures, an initiative that recognizes the next generation of problem solvers with extraordinary potential in geopolitics, innovation, and public leadership.

  • Alex Macario MD MBA

    Alex Macario MD MBA

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsDr. Macario studies health care economics & outcomes, with a special focus on surgery and anesthesia. He is well known for helping develop the field of operating room management, and is keenly interested in the cost-effectiveness analyses of drugs and devices. For the past decade Dr. Macario has added medical education as a research priority to better understand methods to best teach students and residents.

  • M Bruce MacIver

    M Bruce MacIver

    Professor (Research) of Anesthesiology, Perioperative and Pain Medicine, Emeritus

    Current Research and Scholarly InterestsWe study drug effects on the nervous system. Cellular, synaptic and molecular drug actions are investigated using electrophysiological and pharmacological tools in cortical/hippocampal brain slice preparations. We are also interested in mechanisms of neuronal integration and synchronization, especially related to patterns of EEG activity seen in vivo and in brain slices.

  • Crystal Mackall

    Crystal Mackall

    Ernest and Amelia Gallo Family Professor and Professor of Pediatrics and of Medicine

    Current Research and Scholarly InterestsRecent clinical studies, by us and others, have demonstrated that genetically engineered T cells can eradicate cancers resistant to all other therapies. We are identifying new targets for these therapeutics, exploring pathways of resistance to current cell therapies and creating next generation platforms to overcome therapeutic resistance. We have discovered novel insights into the biology of human T cell exhaustion and developed approaches to prevent and reverse this phenomenon.

  • Sean Mackey, M.D., Ph.D.

    Sean Mackey, M.D., Ph.D.

    Redlich Professor, Professor of Anesthesiology, Perioperative, and Pain Medicine and, by courtesy, of Neurology

    Current Research and Scholarly InterestsMultiple NIH funded projects to characterize CNS mechanisms of human pain. Comparative effectiveness of cognitive behavioral therapy and chronic pain self-management within the context of opioid reduction (PCORI funded). Single session pain catastrophizing treatment: comparative efficacy & mechanisms (NIH R01). Development and implementation of an open-source learning healthcare system, CHOIR (http://choir/stanford.edu), to optimize pain care and innovative research in real-world patients.

  • Thomas MaCurdy

    Thomas MaCurdy

    Professor of Economics, Senior Fellow at the Hoover Institution and at the Stanford Institute for Economic Policy Research

    BioThomas MaCurdy is a Senior Fellow at the Stanford Institute of Economic Policy Research, and he further holds appointments as a Professor of Economics and a Senior Fellow at the Hoover Institution at Stanford University. MaCurdy has published numerous articles and reports in professional journals and general-interest public policy venues, and he has served in an editorial capacity for several journals. He is a widely-recognized economist and expert in applied econometrics, who has developed and implemented a wide range of empirical approaches analyzing the impacts of policy in the areas of healthcare and social service programs. MaCurdy directs numerous projects supporting the activities and operations of the Center of Medicare and Medicaid Services (CMS), Congressional Budget Office (CBO), General Accounting Office (GAO), and Medicare Payment Advisory Commission (MedPAC), and Medicaid and CHIP Payment and Access Commission (MACPAC), and he has served as a member of several standing technical review committees for many federal and state government agencies (e.g., CBO, Census, BLS, California Health Benefits Review Program). MaCurdy currently supervises several empirical projects that support CMS regulatory policy responsible for the establishment of Healthcare Exchanges under the Affordable Care Act.

  • Daniel V. Madison

    Daniel V. Madison

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsOur underlying forms of activity-dependent synaptic plasticity such as long-term potentiation and long-term depression, and in particular the function and plasticity of Parvalbumin-containing interneurons in neocortex. In the past few years, we have used a combinatorial approach to comparing physiological and anatomical plasticity-induced changes in synapses using electrode recording and Array Tomography in the same neurons.

  • Merritt Maduke

    Merritt Maduke

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsMolecular mechanisms of ion chnanels & transporters studied by integration of structural and electrophysiological methods.

  • Holden Maecker

    Holden Maecker

    Professor (Research) of Microbiology and Immunology

    Current Research and Scholarly InterestsI'm interested in immune monitoring of T cell responses to chronic pathogens and cancer, and the correlation of T cell response signatures with disease protection.

  • Beatriz Magaloni

    Beatriz Magaloni

    Graham H. Stuart Professor of International Relations and Senior Fellow at the Freeman Spogli Institute for International Studies

    Current Research and Scholarly InterestsComparative Politics, Political Economy, Latin American Politics

  • Vinit B. Mahajan, MD, PhD

    Vinit B. Mahajan, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsOur focus is the development of personalized medicine for eye diseases through translation of our discoveries in proteomics, genomics, and phenomics in humans, mice and tissue culture models.

  • Kelly Mahaney

    Kelly Mahaney

    Assistant Professor of Neurosurgery

    BioDr. Mahaney is a Pediatric Neurosurgeon with clinical interest in Hydrocephalus, Craniovertebral Junction abnormalities, Spasticity, Spinal dysraphism and Myelomeningocele, Central Nervous System tumors, and Pediatric Epilepsy surgery. She completed residency training at the University of Iowa Hospitals and Clinics and subspecialty Pediatric Neurosurgery training at The Hospital for Sick Children in Toronto and the Barrow Neurologic Institute at Phoenix Children's Hospital. She is interested in advancing Neuro-endoscopic techniques in Pediatric Neurosurgical practice. Dr. Mahaney's research focuses on delineating the role of iron in the development of post-hemorrhagic hydrocephalus.

  • Danielle Mai

    Danielle Mai

    Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering

    BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).

  • Ravi Majeti MD, PhD

    Ravi Majeti MD, PhD

    Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia and D. K. Ludwig Professor and Professor of Medicine (Hematology)

    Current Research and Scholarly InterestsThe Majeti lab focuses on the molecular/genomic characterization and therapeutic targeting of leukemia stem cells in human hematologic malignancies, particularly acute myeloid leukemia (AML). Our lab uses experimental hematology methods, stem cell assays, genome editing, and bioinformatics to define and investigate drivers of leukemia stem cell behavior. As part of these studies, we have led the development and application of robust xenotransplantation assays for human hematopoietic cells.

  • Joshua Makower

    Joshua Makower

    Yock Family Professor and Professor of Bioengineering

    Current Research and Scholarly InterestsDr. Josh Makower is the Boston Scientific Applied Bioengineering Professor of Medicine and of Bioengineering at the Stanford University Schools of Medicine and Engineering and the Director of the Stanford Byers Center for Biodesign, the program he co-founded with Dr. Paul Yock twenty years ago. Josh helped create the fundamental structure of the Center’s core curriculum and is the chief architect of what is now called “The Biodesign Process.” Over the past 20 years since Josh and Paul founded Biodesign, this curriculum and the associated textbook has been used at Stanford and across the world to train hundreds of thousands of students, faculty and industry leaders on the Biodesign process towards the advancement of medical innovation for the improvement of patient care. Josh has practiced these same techniques directly as the Founder & Executive Chairman of ExploraMed, a medical device incubator, creating 9 companies since 1995. Transactions from the ExploraMed portfolio include NeoTract, acquired by Teleflex, Acclarent, acquired by J&J, EndoMatrix, acquired by C.R. Bard & TransVascular, acquired by Medtronic. Other ExploraMed/NEA ventures include Moximed, NC8 and Willow. Josh is also a Special Partner at NEA where he supports the healthcare team and medtech/healthtech investing practice. Josh serves on the boards of Allay Therapeutics, Revelle Aesthetics, Setpoint Medical, DOTS Technologies, Eargo, ExploraMed, Intrinsic Therapeutics, Moximed, Willow and Coravin. Josh holds over 300 patents and patent applications. He received an MBA from Columbia University, an MD from the NYU School of Medicine, a bachelor’s degree in Mechanical Engineering from MIT. Josh is a Member of the National Academy of Engineering and the College of Fellows of The American Institute for Medical and Biological Engineering and was awarded the Coulter Award for Healthcare Innovation by the Biomedical Engineering Society in 2018.

  • Maryam S. Makowski, PhD

    Maryam S. Makowski, PhD

    Clinical Associate Professor, Psychiatry and Behavioral Sciences

    BioMaryam Sarah Makowski, PhD, is a Clinical Associate Professor in the Stanford University Department of Psychiatry and Behavioral Sciences and the Associate Director of Scholarship and Health Promotion of the Stanford Medicine WellMD & WellPhD. Dr. Makowski is a member of the WellConnect Program, Lifestyle Psychiatry Clinic, and Measurement-Based Care (CHOIR) team in the Department of Psychiatry and Behavioral Sciences. She is a member of the Well-being Advisory Committee and a Stanford School of Medicine alternate faculty senate of the Department of Psychiatry and Behavioral Sciences.

    Dr. Makowski is a nutrition scientist, a physician well-being expert, and a National Board-Certified Health and Wellness Coach. The focus of her nutrition research is examining the effects of micro- and macro-nutrients, meal composition, and timing on cognitive function, mood, mental sharpness, and eating behaviors of professionals with high cognitive and physical demands, in particular physicians. As a physician coach, Maryam uses evidence-based strategies to empower her physician clients in optimizing their well-being, self-compassion, energy, focus, and mental sharpness for peak performance.

    Maryam completed her master's and doctoral studies in clinical nutrition, nutritional epidemiology, and medical science at the University of Toronto in Canada. Prior to joining Stanford, she served as a scientific associate at Toronto General Hospital-University Health Network in Toronto, and as an advisor to Air Canada rouge pilots and cabin crew on optimal nutrition for fatigue mitigation. Over the course of her career, she has authored highly cited scientific papers on nutrition and well-being.

  • Yvonne Maldonado

    Yvonne Maldonado

    Senior Associate Dean, Faculty Development and Diversity, Taube Professor of Global Health and Infectious Diseases, Professor of Pediatrics (Infectious Diseases) and of Epidemiology and Population Health

    Current Research and Scholarly InterestsMy research focuses on epidemiologic aspects of viral vaccines and perinatal HIV infection. This includes the molecular epidemiology of factors affecting the immunogenicity of oral polio vaccine (OPV) in developing areas of the world, and now the epidemiology of transmission and circulation of vaccine derived polioviruses in order to assist in global eradication of polio. I also work in development of methods to prevent breastfeeding transmission of HIV in Africa.

  • Robert Malenka

    Robert Malenka

    Nancy Friend Pritzker Professor of Psychiatry and Behavioral Sciences
    On Leave from 11/01/2023 To 10/31/2025

    Current Research and Scholarly InterestsLong-lasting changes in synaptic strength are important for the modification of neural circuits by experience. A major goal of my laboratory is to elucidate the molecular events that trigger various forms of synaptic plasticity and the modifications in synaptic proteins that are responsible for the changes in synaptic efficacy.

  • Parag Mallick

    Parag Mallick

    Associate Professor (Research) of Radiology (Cancer Early Detection-Canary Center)

    Current Research and Scholarly InterestsThe Mallick Lab is focused on using integrative, multi-omic approaches to model the processes that govern cellular dynamics and to use those models to discover cancer biomarkers and molecular mechanisms.

  • William J. Maloney, MD

    William J. Maloney, MD

    Boswell Chair of Orthopaedics

    Current Research and Scholarly InterestsDr. Maloney is nationally and internationally recognized for his contributions to the improved understanding of the causes of failure of surgical joint replacement. For example; he established a critical link between polyethylene wear debris and bony erosion, with resulting significant changes in the materials and design strategies of joint replacement surgery. More recently, he has shown that wear debris particles are coated in vivo with human proteins, such as albumin; this observation has notably improved the validity of in vitro investigation in this area. His research in the area of joint replacement has twice won awards from the Hip Society. Dr. Maloney is currently the President of the American Academy of Orthopaedic Surgeons and has served on numerous AAOS committees, including the Council on Education. Previously, he was chair of the American Joint Replacement Registry Board of Directors (AJRR), and on the board of directors for the Knee Society, the Hip Society, the Western Orthopaedic Association, and the American Association of Hip and Knee Surgeons (AAHKS). Dr. Maloney is a past president of the Hip Society. He has been a Visiting Professor to numerous universities and institutions throughout the United States and Asia.

  • Rachel Manber, PhD

    Rachel Manber, PhD

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult)

    Current Research and Scholarly InterestsRecent and current projects include
    Treatment of insomnia during pregnancy
    Treatment of insomnia comorbid with sleep apnea
    Use of digital interventions for insomnia among middle age and older adults
    Mobile intervention for insomnia among those with alcohol use

  • Edward Manche, MD

    Edward Manche, MD

    Professor of Ophthalmology

    BioEdward E. Manche, MD is Professor of Ophthalmology and Director of the Cornea and Refractive Surgery Service at Stanford University School of Medicine. He received his medical degree from Albert Einstein College of Medicine and completed residency training at the University of Medicine and Dentistry at New Jersey where he served as Chief Resident. He completed a two-year fellowship in Cornea and Refractive Surgery at the Jules Stein Eye Institute at UCLA.

    Dr. Manche is a fellow of the American Academy of Ophthalmology and received its Achievement Award in 2003 and its Senior Achievement Award in 2014. He was elected to active membership in the American Ophthalmological Society in 2011, and is recognized in Best Doctors in America and Guide to America's Top Physicians. He serves on the editorial boards of the American Journal of Ophthalmology, Journal of Ophthalmology, Clinical and Experimental Ophthalmology and Journal of Refractive Surgery.

    He lectures widely on topics in cornea and refractive surgery and has published over 130 peer-reviewed articles and 30 book chapters.

  • Christopher Manning

    Christopher Manning

    Thomas M. Siebel Professor of Machine Learning, Professor of Linguistics, of Computer Science and Senior Fellow at the Stanford Institute for HAI

    BioChristopher Manning is the inaugural Thomas M. Siebel Professor of Machine Learning in the Departments of Linguistics and Computer Science at Stanford University, Director of the Stanford Artificial Intelligence Laboratory (SAIL), and an Associate Director of the Stanford Institute for Human-Centered Artificial Intelligence (HAI). His research goal is computers that can intelligently process, understand, and generate human languages. Manning was an early leader in applying Deep Learning to Natural Language Processing (NLP), with well-known research on the GloVe model of word vectors, attention, machine translation, question answering, self-supervised model pre-training, tree-recursive neural networks, machine reasoning, dependency parsing, sentiment analysis, and summarization. He also focuses on computational linguistic approaches to parsing, natural language inference and multilingual language processing, including being a principal developer of Stanford Dependencies and Universal Dependencies. Manning has coauthored leading textbooks on statistical approaches to NLP (Manning and Schütze 1999) and information retrieval (Manning, Raghavan, and Schütze, 2008), as well as linguistic monographs on ergativity and complex predicates. His online CS224N Natural Language Processing with Deep Learning videos have been watched by hundreds of thousands of people. He is an ACM Fellow, a AAAI Fellow, and an ACL Fellow, and a Past President of the ACL (2015). His research has won ACL, Coling, EMNLP, and CHI Best Paper Awards, and an ACL Test of Time Award. He has a B.A. (Hons) from The Australian National University and a Ph.D. from Stanford in 1994, and an Honorary Doctorate from U. Amsterdam in 2023, and he held faculty positions at Carnegie Mellon University and the University of Sydney before returning to Stanford. He is the founder of the Stanford NLP group (@stanfordnlp) and manages development of the Stanford CoreNLP and Stanza software.

  • Andrew J. Mannix

    Andrew J. Mannix

    Assistant Professor of Materials Science and Engineering

    Current Research and Scholarly InterestsAtomically thin 2D materials incorporated into van der Waals heterostructures are a promising platform to deterministically engineer quantum materials with atomically resolved thickness and abrupt interfaces across macroscopic length scales while retaining excellent material properties. Because 2D materials exhibit a wide range of electronic characteristics with properties that often rival conventional electronic materials — e.g., metals, semiconductors, insulators, and superconductors — it is possible to combine them in virtually infinite variety to achieve diverse heterostructures. Furthermore, the van der Waals interface enables interlayer twist engineering to modify the interlayer symmetry, periodic potential (moiré superlattice), and hybridization, which has resulted in novel quantum states of matter. Many of these heterostructures, especially those involving specific interlayer twist angles, would be otherwise infeasible through direct growth.

    The Mannix Group is developing a unique set of in-house capabilities to systematically elucidate the fundamental structure-property relationships underpinning the growth of 2D materials and their inclusion into van der Waals heterostructures. Greater understanding will allow us to provide a platform for engineering the properties of matter at the atomic scale and offer guidance for emerging applications in novel electronics and in quantum information science.

    To accomplish this, we employ: precise growth techniques such as chemical vapor deposition and molecular beam epitaxy; automated van der Waals assembly; and atomically-resolved microscopy including cryo-STM/AFM.

  • Wendy Mao

    Wendy Mao

    Professor of Earth and Planetary Sciences, of Photon Science and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsUnderstanding the formation and evolution of planetary interiors; experimental mineral physics; materials in extreme environments.

  • Scot Marciel

    Scot Marciel

    Lecturer

    BioScot Marciel is a career U.S. Foreign Service Officer currently working as a Visiting Scholar and Practitioner Fellow on Southeast Asia at the Walter Shorenstein Asia Pacific Research Center at Stanford University. Prior to coming to Stanford, he served as U.S. Ambassador to Myanmar from 2016 to 2020. His previous assignments with the U.S. Department of State include as Ambassador to Indonesia, Ambassador for ASEAN Affairs, and Principal Deputy Assistant Secretary of State for East Asia and the Pacific. He also has served in Vietnam, Hong Kong, Turkey, Brazil, and the Philippines. Scot Marciel received a MA from the Fletcher School of Law and DIplomacy, and a BA in International Relations from the University of California, Davis. He is a native of Fremont, California.

  • Ivana Maric

    Ivana Maric

    Assistant Professor (Research) of Pediatrics (Neonatology)

    BioIvana Maric is an Assistant Professor in the Pediatrics Department at the Stanford University School of Medicine. Her research focuses on applying machine learning to improving maternal and neonatal health. Her main focus has been on developing machine learning models for early prediction of adverse outcomes of pregnancy from omics and electronic health records data, that could guide development of low-cost, point of care diagnostic tools. Her main interest is in solutions that are applicable worldwide and especially in low-resource settings. Previously, her research focused on information theory, a mathematical discipline tightly related to statistics and machine learning. She is a recipient of the 2021 Rosenkranz Prize awarded for innovative work to improve health in low- or middle-income countries. She is also a co-recipient of the 2013 IEEE Communications Society Best Tutorial Paper Award.

    She received BS degree from the University of Novi Sad, Serbia, MS and PhD at Rutgers University and postdoctoral training at Stanford University. She served as an Associate Editor for the IEEE Communications Letters from 2009 to 2012 and for the Trans. on Emerging Telecommunications Technologies from 2016 to 2018.

  • Agostino Marinelli

    Agostino Marinelli

    Assistant Professor of Photon Science, of Particle Physics and Astrophysics and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsX-ray free-electron lasers and applications.
    Advanced particle accelerators.

  • M. Peter Marinkovich, MD

    M. Peter Marinkovich, MD

    Associate Professor of Dermatology

    Current Research and Scholarly InterestsThe Marinkovich lab studies the function of epithelial extracellular matrix molecules, including integrins, collagens and laminins in epithelial development and carcinoma progression. We apply our discoveries in this area towards development of molecular therapies for carcinomas, hair disease and inherited epithelial adhesive disorders.

  • Thomas Markland

    Thomas Markland

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsOur research centers on problems at the interface of quantum and statistical mechanics. Particular themes that occur frequently in our research are hydrogen bonding, the interplay between structure and dynamics, systems with multiple time and length-scales and quantum mechanical effects. The applications of our methods are diverse, ranging from chemistry to biology to geology and materials science. Particular current interests include proton and electron transfer in fuel cells and enzymatic systems, atmospheric isotope separation and the control of catalytic chemical reactivity using electric fields.

    Treatment of these problems requires a range of analytic techniques as well as molecular mechanics and ab initio simulations. We are particularly interested in developing and applying methods based on the path integral formulation of quantum mechanics to include quantum fluctuations such as zero-point energy and tunneling in the dynamics of liquids and glasses. This formalism, in which a quantum mechanical particle is mapped onto a classical "ring polymer," provides an accurate and physically insightful way to calculate reaction rates, diffusion coefficients and spectra in systems containing light atoms. Our work has already provided intriguing insights in systems ranging from diffusion controlled reactions in liquids to the quantum liquid-glass transition as well as introducing methods to perform path integral calculations at near classical computational cost, expanding our ability to treat large-scale condensed phase systems.

  • Ellen Markman

    Ellen Markman

    IBM Provostial Professor

    BioMarkman’s research interests include the relationship between language and thought; early word learning; categorization and induction; theory of mind and pragmatics; implicit theories and conceptual change, and how theory-based explanations can be effective interventions in health domains.

  • Jessie (Kittle) Markovits

    Jessie (Kittle) Markovits

    Clinical Associate Professor, Medicine
    Clinical Associate Professor (By courtesy), Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsHypnosis for perioperative symptom management in elective orthopedic surgery.

  • Michael Marmor, MD

    Michael Marmor, MD

    Professor of Ophthalmology, Emeritus

    Current Research and Scholarly InterestsResearch concerns diseases of retinal function, techniques of clinical electrophysiology, and experimental studies on retinal pigment epithelial (RPE) function including fluid transport and retinal adhesiveness. Other studies consider aspects of vision and art, and ophthalmic history.
    Published over 300 journal articles, chapters, books (only selected articles listed).

  • David J. Maron

    David J. Maron

    C. F. Rehnborg Professor and Professor of Medicine (Stanford Prevention Research Center)

    Current Research and Scholarly InterestsDr. Maron is the Co-Chair and Principal Investigator of the ISCHEMIA trial, and Co-Chair of the ISCHEMIA-CKD trial. These large, international, NIH-funded studies will determine whether an initial invasive strategy of cardiac catheterization and revascularization plus optimal medical therapy will reduce cardiovascular events in patients with and without chronic kidney disease and at least moderate ischemia compared to an initial conservative strategy of optimal medical therapy alone.

  • Alison Marsden

    Alison Marsden

    Douglass M. and Nola Leishman Professor of Cardiovascular Diseases, Professor of Pediatrics (Cardiology) and of Bioengineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • Nicole Martinez-Martin

    Nicole Martinez-Martin

    Assistant Professor (Research) of Pediatrics (Biomedical Ethics)

    Current Research and Scholarly InterestsNIH/National Institute of Mental Health
    K01 MH118375-01A1
    “Ethical, Legal and Social Implications in the Use of Digital Technology for Mental Health Applications”

    Greenwall Foundation Making a Difference in Bioethics Grant
    “Ethical, Legal and Social Implications of Digital Phenotyping”

  • Nicole M. Martinez

    Nicole M. Martinez

    Assistant Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsThe Martinez lab studies RNA regulatory mechanisms that control gene expression. We focus on mRNA processing, RNA modifications and their roles in development and disease.

  • Olivia Martinez

    Olivia Martinez

    Johnson and Johnson Professor of Surgery

    Current Research and Scholarly InterestsHost-Pathogen interactions; EBV B cell lymphomas; pathways of immune evasion in the growth and survival of EBV B cell lymphomas; mechanisms of graft rejection and tolerance induction; stem cell and solid organ transplantation.

  • Todd Martinez

    Todd Martinez

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science

    Current Research and Scholarly InterestsAb initio molecular dynamics, photochemistry, molecular design, mechanochemistry, graphical processing unit acceleration of electronic structure and molecular dynamics, automated reaction discovery, ultrafast (femtosecond and attosecond) chemical phenomena

  • Tarik F. Massoud, MD, PhD

    Tarik F. Massoud, MD, PhD

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsMy current interests are in molecular and translational imaging of the brain especially in neuro-oncology and cerebrovascular diseases, experimental aspects of neuroimaging, clinical neuroradiology, neuroradiological anatomy, and research education and academic training of radiologists and scientists.

  • Oriana Mastro

    Oriana Mastro

    Center Fellow at the Freeman Spogli Institute for International Studies and Assistant Professor (by courtesy) of Political Science

    BioOriana Skylar Mastro is a Center Fellow at the Freeman Spogli Institute for International Studies, Stanford University where her research focuses on Chinese military and security policy, Asia-Pacific security issues, war termination, and coercive diplomacy. She is also Foreign and Defense Policy Studies Fellow at the American Enterprise Institute and continues to serve in the United States Air Force Reserve for which she works as a strategic planner at INDOPACOM J56. For her contributions to U.S. strategy in Asia, she won the Individual Reservist of the Year Award in 2016. She has published widely, including in Foreign Affairs, International Security, International Studies Review, Journal of Strategic Studies, The Washington Quarterly, The National Interest, Survival, and Asian Security, and is the author of The Costs of Conversation: Obstacles to Peace Talks in Wartime, (Cornell University Press, 2019). She holds a B.A. in East Asian Studies from Stanford University and an M.A. and Ph.D. in Politics from Princeton University. Her publications and other commentary can be found on twitter @osmastro and www.orianaskylarmastro.com.

  • Maya Mathur

    Maya Mathur

    Assistant Professor (Research) of Pediatrics, of Medicine (Biomedical Informatics) and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsSynthesizing evidence across studies while accounting for biases

  • AC Matin

    AC Matin

    Member, Bio-X

    Current Research and Scholarly Interests1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.

  • Michaëlle Ntala Mayalu

    Michaëlle Ntala Mayalu

    Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.

    Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.

    She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines.

  • Harley H McAdams

    Harley H McAdams

    Professor (Research) of Developmental Biology, Emeritus

    Current Research and Scholarly InterestsExperimental and theoretical analysis and modeling of genetic regulatory circuits, particularly bacterial regulation and with emphasis on global regulation of Caulobacter crescentus. Bioinformatic analysis of bacterial genomes, global patterns of gene transcription and translation.

  • Jay McClelland

    Jay McClelland

    Lucie Stern Professor in the Social Sciences, Professor of Psychology and, by courtesy, of Linguistics and of Computer Science
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsMy research addresses topics in perception and decision making; learning and memory; language and reading; semantic cognition; and cognitive development. I view cognition as emerging from distributed processing activity of neural populations, with learning occurring through the adaptation of connections among neurons. A new focus of research in the laboratory is mathematical cognition and reasoning in humans and contemporary AI systems based on neural networks.

  • Michael V. McConnell, MD, MSEE

    Michael V. McConnell, MD, MSEE

    Clinical Professor, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsMy imaging research has involved clinical and molecular Imaging of cardiovascular disease, with a focus on coronary and vascular diseases, including atherosclerosis, aortic aneurysms, and vascular inflammation.

    My prevention research has involved innovative technologies to reduce coronary and vascular disease, including early disease detection plus leveraging mobile health and AI to enhance heart heart in patients and populations.

  • Susan K. McConnell

    Susan K. McConnell

    Susan B. Ford Professor, Emerita

    Current Research and Scholarly InterestsSusan McConnell has studied the cellular and molecular mechanisms that underlie the development of the mammalian cerebral cortex. Her work focused on the earliest events that pattern the developing forebrain, enable neural progenitors to divide asymmetrically to generate young neurons, propel the migration of postmitotic neurons outward into their final positions, and sculpt the fates and phenotypes of the neurons as they differentiate.

  • Daniel McFarland

    Daniel McFarland

    Professor of Education and, by courtesy, of Sociology and of Organizational Behavior at the Graduate School of Business

    Current Research and Scholarly InterestsThe majority of my current research projects concern the sociology of science and research innovation. Here are some examples of projects we are pursuing:
    1. the process of intellectual jurisdiction across fields and disciplines
    2. the process of knowledge innovation diffusion in science
    3. the propagators of scientific careers and advance
    4. the role of identity and diversity on the process of knowledge diffusion and career advance
    5. the process of research translation across scientific fields and into practice
    6. the formal properties and mechanisms of ideational change (network analysis, or holistic conceptions of scientific propositions and ideas)
    7. developing methods for identifying the rediscovery of old ideas recast anew
    8. investigating the process of scientific review

    I am also heavily involved in research on social networks and social network theory development. Some of my work concerns relational dynamics and cognitive networks as represented in communication. This often concerns the communication of children (in their writings and speech in classrooms) and academic scholars. I am also co-editing a special issue in Social Networks on "network ecology", and I am a coauthor on a social network methods textbook coming out with Cambridge Press (Forthcoming, by Craig Rawlings, Jeff Smith, James Moody and Daniel McFarland).

    Last, I am heavily involved in institutional efforts to develop computational social science, computational sociology, and education data science on Stanford's campus.

  • Michael McFaul

    Michael McFaul

    Director, Freeman Spogli Institute for International Studies, Ken Olivier and Angela Nomellini Professor of International Studies and Senior Fellow at the Hoover Institution, the Freeman Spogli Institute and the Woods Institute

    Current Research and Scholarly InterestsAmerican foreign policy, great power relations, comparative autocracies, and the relationship between democracy and development.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • David B. McKay

    David B. McKay

    Professor of Structural Biology, Emeritus

    Current Research and Scholarly InterestsThree-dimensional structure determination and biophysical studies of macromolecules.

  • Tracey McLaughlin

    Tracey McLaughlin

    Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsDr. McLaughlin conducts clinical research related to obesity, insulin resistance, diabetes, and cardiovascular disease (CVD). Current studies include: 1) the impact of macronutrient composition on metabolism, DM2 and CVD; 2) comparison of different weight loss diets on metabolism and CVD risk reduction ; 3) role of adipocytes and adipose tissue immune cells in modulating insulin resistance; 4) use of continuous glucose monitoring and multi-omics to define metabolic phenotype and precision diets

  • Uel Jackson McMahan

    Uel Jackson McMahan

    Professor of Neurobiology and of Structural Biology, Emeritus

    Current Research and Scholarly InterestsWe are currently investigating mechanisms involved in synaptic transmission and synaptogenesis using electron microscope tomography in ways that provide in situ 3D structural information at macromolecular resolution.

  • Jennifer A McNab

    Jennifer A McNab

    Associate Professor (Research) of Radiology (Radiological Sciences Laboratory)

    Current Research and Scholarly InterestsMy research is focused on developing magnetic resonance imaging (MRI) methods that probe brain tissue microstructure. This requires new MRI contrast mechanisms, strategic encoding and reconstruction schemes, physiological monitoring, brain tissue modeling and validation. Applications of these methods include neuronavigation, neurosurgical planning and the development of improved biomarkers for brain development, degeneration, disease and injury.

  • Kimford Meador, MD

    Kimford Meador, MD

    Professor of Neurology (Adult Neurology)

    BioDr. Meador is a Professor of Neurology and Neurosciences at Stanford University, and Clinical Director, Stanford Comprehensive Epilepsy Center. Dr. Meador graduated from the Georgia Institute of Technology in Applied Biology (with high honor) and received his MD from the Medical College of Georgia. After an internship at the University of Virginia and service as an officer in the Public Health Corps, he completed a residency in Neurology at the Medical College of Georgia and a fellowship in Behavioral Neurology at the University of Florida. Dr. Meador joined the faculty at the Medical College of Georgia (1984-2002) where he became the Charbonnier Professor of Neurology. He was the Chair of Neurology at Georgetown University (2002-2004), the Melvin Greer Professor of Neurology and Neuroscience at the University of Florida (2004-2008) where he served as Director of Epilepsy Program and Director of the Clinical Alzheimer Research Program, and Professor of Neurology and Pediatrics at Emory University (2008-2013) where he served as Director of Epilepsy and of Clinical Neurocience Research. He joined the faculty of Stanford University in 2013. Dr. Meador has authored over 400 peer-reviewed publications. His research interests include: cognitive mechanisms (e.g., memory and attention); cerebral lateralization; pharmacology and physiology of cognition; mechanisms of perception, consciousness and memory; EEG; epilepsy; epilepsy and pregnancy; preoperative evaluation for epilepsy surgery; intracarotid amobarbital procedure (i.e., Wada test); functional imaging; therapeutic drug trials; neurodevelopmental effects of antiepileptic drugs; psychoimmunology; behavioral disorders (e.g., aphasia, neglect, dementia); and neuropsychiatric disorders. Dr. Meador has served as the PI for a long running NIH multicenter study of pregnancy outcomes in women with epilepsy and their children. Dr. Meador has served on the editorial boards for Clinical Neurophysiology, Epilepsy and Behavior, Epilepsy Currents, Journal of Clinical Neurophysiology, Neurology, Cognitive and Behavioral Neurology, and Epilepsy.com. His honors include Resident Teaching Award Medical College of Georgia; Outstanding Young Faculty Award in Clinical Sciences Medical College of Georgia; Distinguished Faculty Award for Clinical Research Medical College of Georgia Lawrence C. McHenry History Award American Academy of Neurology; Dreifuss Abstract Award American Epilepsy Society; Fellow of the American Neurological Association; Diplomat of American Neurologic Association; past Chair of the Section of Behavioral Neurology of American Academy of Neurology; past President of Society for Cognitive and Behavioral Neurology; past President of the Society for Behavioral & Cognitive Neurology; past President of the Southern EEG & Epilepsy Society; ranking in the top 10 experts in epilepsy worldwide by Expertscape; Distinguished Alumnus Award for Professional Achievement, Medical College of Georgia, Georgia Regents University 2015; American Epilepsy Society Clinical Research Award; and named award by the American Epilepsy Society: “Kimford J. Meador Research in Women with Epilepsy Award,” and ranked in the top 500 neuroscientist in the world and top 300 in USA by Research.com in 2022.

  • Elizabeth Mellins

    Elizabeth Mellins

    Member, Bio-X

    Current Research and Scholarly InterestsMolecular mechanisms and intracellular pathways of MHC class II antigen processing and presentation, with a focus on B cells; mechanisms underlying HLA allele association with disease; disease mechanisms in systemic juvenile idiopathic arthritis, including an HLA-linked complication; monocytes as drivers or suppressors of auto-inflammation in systemic juvenile idiopathic arthritis and pediatric acute neuropsychiatric syndrome.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Teresa Meng

    Teresa Meng

    Reid Weaver Dennis Professor in Electrical Engineering and Professor of Computer Science, Emerita

    BioTeresa H. Meng is the Reid Weaver Dennis Professor of Electrical Engineering, Emerita, at Stanford University. Her research activities in the first 10 years focused on low-power circuit and system design, video signal processing, and wireless communications. In 1998, Prof. Meng took leave from Stanford and founded Atheros Communications, Inc., which developed semiconductor system solutions for wireless network communications products. After returning to Stanford in 2000 to continue her teaching and research, Prof. Meng turned her research interest to applying signal processing and IC design to bio-medical engineering. She collaborated with Prof. Krishna Shenoy on neural signal processing and neural prosthetic systems. She also directed a research group exploring wireless power transfer and implantable bio-medical devices. Prof. Meng retired from Stanford in 2013.

  • Vinod Menon

    Vinod Menon

    Rachael L. and Walter F. Nichols, MD, Professor and Professor, by courtesy, of Education and of Neurology

    Current Research and Scholarly InterestsEXPERIMENTAL, CLINICAL AND THEORETICAL SYSTEMS NEUROSCIENCE

    Cognitive neuroscience; Systems neuroscience; Cognitive development; Psychiatric neuroscience; Functional brain imaging; Dynamical basis of brain function; Nonlinear dynamics of neural systems.

  • Mark Mercola

    Mark Mercola

    Professor of Medicine (Cardiovascular) and, by courtesy, of Chemical and Systems Biology

    BioDr. Mercola is Professor of Medicine and Professor in the Stanford Cardiovascular Institute. He completed postdoctoral training at the Dana-Farber Cancer Institute and Harvard Medical School, was on the faculty in the Department of Cell Biology at Harvard Medical School for 12 years, and later at the Sanford-Burnham-Prebys Institute and Department of Bioengineering at the University of California, San Diego before relocating to Stanford in 2015.

    Prof. Mercola is known for identifying many of the factors that are responsible for inducing and forming the heart, including the discovery that Wnt inhibition is a critical step in cardiogenesis that provided the conceptual basis and reagents for the large-scale production of cardiovascular tissues from pluripotent stem cells. He has collaborated with medicinal chemists, optical engineers and software developers to pioneer the use of patient iPSC-cardiomyocytes for disease modeling, safety pharmacology and drug development. His academic research is focused on developing and using quantitative high throughput assays of patient-specific cardiomyocyte function to discover druggable targets for preserving contractile function in heart failure and promoting regeneration following ischemic injury. He co-established drug screening and assay development at the Conrad Prebys Drug Discovery Center (San Diego), which operated as one of 4 large screening centers of the US National Institutes of Health (NIH) Molecular Libraries screening initiative and continues as one of the largest academic drug screening centers.

    Prof. Mercola received an NIH MERIT award for his work on heart formation. He holds numerous patents, including describing the invention of the first engineered dominant negative protein and small molecules for stem cell and cancer applications. He serves on multiple editorial and advisory boards, including Vala Sciences, Regencor, The Ted Rogers Centre for Heart Research and the Human Biomolecular Research Institute. His laboratory is funded by the National Institutes of Health (NIH), California Institute for Regenerative Medicine, Phospholamban Foundation and Fondation Leducq.

  • Everett Meyer

    Everett Meyer

    Associate Professor of Medicine (Blood and Marrow Transplantation and Cellular Therapy), of Pediatrics (Stem Cell Transplantation) and, by courtesy, of Surgery (Abdominal Transplantation)

    Current Research and Scholarly InterestsResearch focus in T cell immunotherapy and T cell immune monitoring using high-throughput sequencing and genomic approaches, with an emphasis on hematopoietic stem cell transplantation, the treatment of graft-versus-host disease and immune tolerance induction.

  • Timothy Meyer

    Timothy Meyer

    Stanford University Professor of Nephrology, Emeritus

    Current Research and Scholarly InterestsInadequate removal of uremic solutes contributes to widespread illness in the more than 500,000 Americans maintained on dialysis. But we know remarkably little about these solutes. Dr. Meyer's research efforts are focused on identifying which uremic solutes are toxic, how these solutes are made, and how their production could be decreased or their removal could be increased. We should be able to improve treatment if we knew more about what we are trying to remove.

  • Sara Michie

    Sara Michie

    Professor of Pathology (Research), Emerita

    Current Research and Scholarly InterestsLymphocyte/endothelial cell adhesion mechanisms involved in lymphocyte migration to sites of inflammation; regulation of expression of endothelial cell adhesion molecules.

  • Emmanuel Mignot, MD, PhD

    Emmanuel Mignot, MD, PhD

    Craig Reynolds Professor of Sleep Medicine and Professor, by courtesy, of Genetics and of Neurology

    Current Research and Scholarly InterestsThe research focus of the laboratory is the study of sleep and sleep disorders such as narcolepsy and Kleine Levin syndrome. We also study the neurobiological and genetic basis of the EEG and develop new tools to study sleep using nocturnal polysomnography. Approaches mostly involve human genetic studies (GWAS, sequencing), EEG signal analysis (deep learning), and immunology (narcolepsy is an autoimmune disease of the brain). We also work on autoimmune encephalitis.

  • Paul Milgrom

    Paul Milgrom

    Shirley R. and Leonard W. Ely, Jr. Professor in the School of Humanities and Sciences, Professor of Economics, Senior Fellow at SIEPR and Professor, by courtesy, of Economics at the GSB and of Management Science and Engineering

    BioPaul Milgrom is the Shirley and Leonard Ely professor of Humanities and Sciences in the Department of Economics at Stanford University and professor, by courtesy, in the Stanford Graduate School of Business and in the Department of Management Sciences and Engineering. Born in Detroit, Michigan on April 20, 1948, he is a member of both the National Academy of Sciences and the American Academy of Arts and Sciences and a winner of the 2008 Nemmers Prize in Economics, the 2012 BBVA Frontiers of Knowledge award, the 2017 CME-MSRI prize for Innovative Quantitative Applications, and the 2018 Carty Award for the Advancement of Science.

    Milgrom is known for his work on innovative resource allocation methods, particularly in radio spectrum. He is coinventor of the simultaneous multiple round auction and the combinatorial clock auction. He also led the design team for the FCC's 2017 incentive auction, which reallocated spectrum from television broadcast to mobile broadband.

    According to his BBVA Award citation: “Paul Milgrom has made seminal contributions to an unusually wide range of fields of economics including auctions, market design, contracts and incentives, industrial economics, economics of organizations, finance, and game theory.” As counted by Google Scholar, Milgrom’s books and articles have received more than 80,000 citations.

    Finally, Milgrom has been a successful adviser of graduate students, winning the 2017 H&S Dean's award for Excellence in Graduate Education.

  • Carlos Milla

    Carlos Milla

    Professor of Pediatrics (Pulmonary Medicine) and, by courtesy, of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsAt Stanford University I developed and currently direct the CF Translational Research Center. The overarching goal of the center is to provide the groundwork to streamline, accelerate, and promote the translation of basic discoveries into effective therapies and interventions to benefit patients affected by cystic fibrosis. My laboratory group currently has three main lines of investigation: respiratory cell biology in CF; remote biochemical monitoring; and lung physiology in young children.

  • D. Craig Miller, M.D.

    D. Craig Miller, M.D.

    Thelma and Henry Doelger Professor of Cardiovascular Surgery, Emeritus

    Current Research and Scholarly InterestsCardiac and heart valve disease with experimental laboratory large animal projects focused on the investigation of left ventricular and cardiac mechanics, bioenergetics, and LV and mitral valve physiology and pathophysiology. Current thrust is aimed at understanding the mitral valve and subvalvular mitral apparatus and transmural LV wall strains, thickening, and myolaminar fiber-sheet mechanics.

    Clinical research interests include thoracic aortic diseases (aortic dissection, aneurysm) and cardiac valvular disease, including surgical treatment, endovascular thoracic aortic stent-graft repair, mitral valve repair, and valve-sparing aortic root replacement.

  • Arnold Milstein

    Arnold Milstein

    Professor of Medicine (General Medical Discipline)

    Current Research and Scholarly InterestsDesign national demonstration of innovations in care delivery that provide more with less. Informed by research on AI-assisted clinical workflow, positive value outlier analysis and triggers of loss aversion bias among patients and clinicians.

    Research on creation of a national index of health system productivity gain.

  • Paul Salomon Mischel

    Paul Salomon Mischel

    Fortinet Founders Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.

  • William Mitch

    William Mitch

    Professor of Civil and Environmental Engineering
    On Leave from 04/01/2024 To 06/30/2024

    BioBill Mitch received a B.A. in Anthropology (Archaeology) from Harvard University in 1993. During his studies, he excavated at Mayan sites in Belize and surveyed sites dating from 2,000 B.C. in Louisiana. He switched fields by receiving a M.S. degree in Civil and Environmental Engineering at UC Berkeley. He worked for 3 years in environmental consulting, receiving his P.E. license in Civil Engineering in California. Returning to UC Berkeley in 2000, he received his PhD in Civil and Environmental Engineering in 2003. He moved to Yale as an assistant professor after graduation. His dissertation received the AEESP Outstanding Doctoral Dissertation Award in 2004. At Yale, he serves as the faculty advisor for the Yale Student Chapter of Engineers without Borders. In 2007, he won a NSF CAREER Award. He moved to Stanford University as an associate professor in 2013.

    Employing a fundamental understanding of organic chemical reaction pathways, his research explores links between public health, engineering and sustainability. Topics of current interest include:

    Public Health and Emerging Carcinogens: Recent changes to the disinfection processes fundamental to drinking and recreational water safety are creating a host of highly toxic byproducts linked to bladder cancer. We seek to understand how these compounds form so we can adjust the disinfection process to prevent their formation.

    Global Warming and Oceanography: Oceanic dissolved organic matter is an important global carbon component, and has important impacts on the net flux of CO2 between the ocean and atmosphere. We seek to understand some of the important abiotic chemical reaction pathways responsible for carbon turnover.

    Sustainability and Persistent Organic Pollutants (POPs): While PCBs have been banned in the US, we continue to produce a host of structurally similar chemicals. We seem to understand important chemical pathways responsible for POP destruction in the environment, so we can design less persistent and problematic chemicals in the future.

    Engineering for Sustainable Wastewater Recycling: The shortage of clean water represents a critical challenge for the next century, and has necessitated the recycling of wastewater. We seek to understand ways of engineer this process in ways to minimize harmful byproduct formation.

    Carbon Sequestration: We are evaluating the formation of nitrosamine and nitraminecarcinogens from amine-based carbon capture, as well as techniques to destroy any of these byproducts that form.

  • John Mitchell

    John Mitchell

    Mary and Gordon Crary Family Professor in the School of Engineering, and Professor, by courtesy, of Electrical Engineering and of Education

    Current Research and Scholarly InterestsProgramming languages, computer security and privacy, blockchain, machine learning, and technology for education

  • Anish Mitra

    Anish Mitra

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)

    BioAnish Mitra is a neuroscientist and psychiatrist interested in understanding how neural activity in large-scale networks causes mental illness.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    George D. Smith Professor of Translational Medicine

    Current Research and Scholarly InterestsTwo areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Matteo Amitaba Mole'

    Matteo Amitaba Mole'

    Assistant Professor of Obstetrics and Gynecology (Reproductive & Stem Cell Biology)

    Current Research and Scholarly InterestsThe research focus of our laboratory is centered on investigating the complex process of human embryo implantation. Due to the limited availability of suitable model systems and inability to directly observe this process in vivo, this has been traditionally referred to as the enigmatic stage of human embryonic development.

    The successful implantation of an embryo is crucial for the establishment of a healthy pregnancy. During the transition between the first and second week of gestation, the human embryo must securely implant into the maternal uterus, initiating development of the placenta to receive necessary nutrients and oxygen for its growth until birth.

    However, the process of implantation in humans is highly susceptible to failure, with a significant percentage of embryos unable to develop beyond this stage leading to early miscarriages. This clinically observed "implantation barrier" often requires patients to undergo numerous cycles of IVF treatment, with no guarantee of a successful pregnancy outcome.

    The primary objective is to increase the understanding of maternal-embryo interactions initiated at implantation, with the goal of developing clinical interventions to address the high incidence of implantation failures underlying pre-clinical miscarriages.

  • Denise M. Monack

    Denise M. Monack

    Martha Meier Weiland Professor in the School of Medicine

    Current Research and Scholarly InterestsThe primary focus of my research is to understand the genetic and molecular mechanisms of intracellular bacterial pathogenesis. We use several model systems to study complex host-pathogen interactions in the gut and in immune cells such as macrophages and dendritic cells. Ultimately we would like to understand how Salmonella persists within certain hosts for years in the face of a robust immune response.

  • Benoit Monin

    Benoit Monin

    Bowen H. and Janice Arthur McCoy Professor of Leadership Values and Professor of Psychology

    Current Research and Scholarly InterestsMy research deals with how people address threats to the self in interpersonal situations: How they avoid feeling prejudiced, how they construe other people's behavior to make to their own look good, how they deal with dissonance, how they affirm a threatened identity, how they resent the goodness of others when it makes them look bad, etc. I study these issues in the context of social norms, the self, and morality, broadly defined.