Independent Labs, Institutes, and Centers (Dean of Research)


Showing 251-300 of 1,057 Results

  • Alexander Dunn

    Alexander Dunn

    Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • James Dunn

    James Dunn

    Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsIntestinal lengthening for short bowel syndrome
    Intestinal stem cell therapy for intestinal failure
    Skin derived precursor cell therapy for enteric neuromuscular dysfunction
    Intestinal tissue engineering

  • Gozde Durmus

    Gozde Durmus

    Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.

  • Elizabeth Egan

    Elizabeth Egan

    Associate Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsMalaria is a parasitic disease transmitted by mosquitos that is a leading cause of childhood mortality globally. Public health efforts to control malaria have historically been hampered by the rapid development of drug resistance. The goal of our research is to understand the molecular determinants of critical host-pathogen interactions in malaria, with a focus on the erythrocyte host cell. Our long-term goal is to develop novel approaches to prevent or treat malaria and improve child health.

  • Johannes C. Eichstaedt

    Johannes C. Eichstaedt

    Assistant Professor (Research) of Psychology

    Current Research and Scholarly InterestsWell-being: affect, life satisfaction, and purpose, and their individual and societal determinants (lifestyle factors and policies); traits: character strengths, personality, trust, and empathy

    Mental and physical health: depression, stress, and anxiety; health psychology: heart disease and opioid addiction

    Methods: Natural Language Processing & Large Language Models; data science and
    visualization; longitudinal methods, machine learning, and psychological assessment through AI

  • Shirit Einav

    Shirit Einav

    Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, coronaviruses, encephalitic alphaviruses, and Ebola, and means to predict progression to severe disease.

  • Drew Endy

    Drew Endy

    Associate Professor of Bioengineering and Senior Fellow, by courtesy, at the Hoover Institution and at the Freeman Spogli Institute for International Studies

    Current Research and Scholarly InterestsWe work to strengthen the foundations and expand the frontiers of synthetic biology. Our foundational work includes (i) advancing reliable reuse of bio-measurements and -materials via standards that enable coordination of labor, and (ii) developing and integrating measurement and modeling tools for representing and analyzing living matter at whole-cell scales. Our work beyond the frontiers of current practice includes (iii) bootstrapping biotechnology tools in unconventional organisms (e.g., mealworms, wood fungus, skin microbes), and (iv) exploring the limits of whole-genome recoding and building cells from scratch. We also support strategy and policy work related to bio-safety, security, economy, equity, justice, and leadership.

  • Barbara Elizabeth Engelhardt

    Barbara Elizabeth Engelhardt

    Professor (Research) of Biomedical Data Science and, by courtesy, of Statistics

    BioBarbara E Engelhardt is a Senior Investigator at Gladstone Institutes and Professor at Stanford University in the Department of Biomedical Data Science. She received her B.S. (Symbolic Systems) and M.S. (Computer Science) from Stanford University and her PhD from UC Berkeley (EECS) advised my Prof. Michael I Jordan. She was a postdoctoral fellow with Prof. Matthew Stephens at the University of Chicago. She was an Assistant Professor at Duke University from 2011-2014, and an Assistant, Associate, and then Full Professor at Princeton University in Computer Science from 2014-2022. She has worked at Jet Propulsion Labs, Google Research, 23andMe, and Genomics plc. In her career, she received an NSF GRFP, the Google Anita Borg Scholarship, the SMBE Walter M. Fitch Prize (2004), a Sloan Faculty Fellowship, an NSF CAREER, and the ISCB Overton Prize (2021). Her research is focused on developing and applying models for structured biomedical data that capture patterns in the data, predict results of interventions to the system, assist with decision-making support, and prioritize experiments for design and engineering of biological systems.

  • Edgar Engleman

    Edgar Engleman

    Professor of Pathology and of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsDendritic cells, macrophages, NK cells and T cells; functional proteins and genes; immunotherapeutic approaches to cancer, autoimmune disease, neurodegenerative disease and metabolic disease.

  • Jesse Engreitz

    Jesse Engreitz

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsRegulatory elements in the human genome harbor thousands of genetic risk variants for common diseases and could reveal targets for therapeutics — if only we could map the complex regulatory wiring that connects 2 million regulatory elements with 21,000 genes in thousands of cell types in the human body.

    We combine experimental and computational genomics, biochemistry, molecular biology, and genetics to assemble regulatory maps of the human genome and uncover biological mechanisms of disease.

  • Daniel Bruce Ennis

    Daniel Bruce Ennis

    Professor of Radiology (Veterans Affairs)

    BioDaniel Ennis {he/him} is a Professor in the Department of Radiology. As an MRI scientist for nearly twenty years, he has worked to develop advanced translational cardiovascular MRI methods for quantitatively assessing structure, function, flow, and remodeling in both adult and pediatric populations. He began his research career as a Ph.D. student in the Department of Biomedical Engineering at Johns Hopkins University during which time he formed an active collaboration with investigators in the Laboratory of Cardiac Energetics at the National Heart, Lung, and Blood Institute (NIH/NHLBI). Thereafter, he joined the Departments of Radiological Sciences and Cardiothoracic Surgery at Stanford University as a postdoc and began to establish an independent research program with an NIH K99/R00 award focused on “Myocardial Structure, Function, and Remodeling in Mitral Regurgitation.” For ten years he led a group of clinicians and scientists at UCLA working to develop and evaluate advanced cardiovascular MRI exams as PI of several NIH funded studies. In 2018 he returned to the Department of Radiology at Stanford University as faculty in the Radiological Sciences Lab to bolster programs in cardiovascular MRI. He is also the Director of Radiology Research for the Veterans Administration Palo Alto Health Care System where he oversees a growing radiology research program.

  • Gregory Enns

    Gregory Enns

    Professor of Pediatrics (Genetics)

    Current Research and Scholarly Interestsmitochondrial genomics, lysosomal disorders, tandem-mass spectrometry newborn screening, and inborn errors of metabolism presentations and natural history

  • Neir Eshel, MD, PhD

    Neir Eshel, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)

    BioDr. Eshel (he/him/his) is a tenure-track Assistant Professor in the Department of Psychiatry & Behavioral Sciences at Stanford University School of Medicine.

    His clinical focus is the full-spectrum mental health care of sexual and gender minorities, with particular interest in depression, anxiety, and the complex effects of trauma in this population. He works in collaboration with other primary care and mental health providers at the Stanford LGBTQ+ program.

    His research interests (www.staarlab.com) include the use of optogenetic, electrophysiological, neuroimaging, and behavioral approaches to probe the neural circuits of reward processing, decision making, and social behavior. He has won multi-year grants from the National Institutes of Health, Burroughs-Wellcome Fund, Brain and Behavior Research Foundation, and Simons Foundation to further his research.

    Dr. Eshel has published articles on dopamine and motivation, the neuroscience of irritability, LGBTQ health, reward and punishment processing in depression, behavioral predictors of substance use among adolescents, and the mechanism of transcranial magnetic stimulation. His work has appeared in Nature, Science, Neuron, Nature Neuroscience, Annual Review of Neuroscience, JAMA, JAMA Psychiatry, Neuropsychopharmacology, Proceedings of the National Academy of Sciences, and Journal of Neuroscience. He is a co-inventor on a patent pending for a new class of drugs for addiction, and also the author of the book Learning: The Science Inside, a publication of the American Association for the Advancement of Science.

    He has delivered presentations on the neural circuits of motivated behavior, anger expression in patients with PTSD, how dopamine facilitates learning, and LGBTQ-related topics at departmental seminars in London, Zurich, and Tel Aviv, and at the meetings of the American College of Neuropsychopharmacology, Society of Biological Psychiatry, and Association of American Medical Colleges, among others. He is also an associate editor of the Journal of Gay and Lesbian Mental Health, and an ad-hoc reviewer for numerous publications including Nature, Science, JAMA Psychiatry, Biological Psychiatry, and Current Biology.

    Dr. Eshel has won honors for his scholarship and advocacy, including the Marshall Scholarship, the Outstanding Resident Award from the National Institute of Mental Health, the Science and SciLifeLab Grand Prize for Young Scientists, the Freedman Award (honorable mention) from the Brain and Behavior Research Foundation, the Polymath Award from Stanford's psychiatry department, and the National LGBT Health Achievement Award.

    He is a member of the American Psychiatric Association, American College of Neuropsychopharmacology, Society of Biological Psychiatry, Association of Gay & Lesbian Psychiatrists, Society for Neuroscience, and other professional associations. He is also an advocate for LGBTQ rights, recently serving as the chair of Stanford's LGBTQ+ Benefits Advocacy Committee.

    Prior to Stanford, Dr. Eshel trained and conducted research at the National Institutes of Health, Princeton University, the World Health Organization, University College London, and Harvard University.

  • Carlos O. Esquivel, M.D., Ph.D.,FACS

    Carlos O. Esquivel, M.D., Ph.D.,FACS

    Arnold and Barbara Silverman Professor in Pediatric Transplantation and Professor of Surgery (Abdominal Transplantation) and of Pediatrics (Gastroenterology, Hepatology and Nutrition)

    Current Research and Scholarly Interests1) Induction of immunotolerance
    2) Rejection of liver and intestinal transplantation.
    3) Clinical outcomes of children with unresectable liver tumors.

  • Ryann Fame

    Ryann Fame

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsEarly neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies.

  • Alice C. Fan

    Alice C. Fan

    Associate Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.

  • Jonathan Fan

    Jonathan Fan

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.

  • Shanhui Fan

    Shanhui Fan

    Joseph and Hon Mai Goodman Professor of the School of Engineering and Professor, by courtesy, of Applied Physics

    BioFan's research interests are in fundamental studies of nanophotonic structures, especially photonic crystals and meta-materials, and applications of these structures in energy and information technology applications

  • Wendy Fantl

    Wendy Fantl

    Associate Professor (Research) of Urology
    On Leave from 08/13/2022 To 08/12/2024

    Current Research and Scholarly InterestsDr Fantl’s lab studies two key questions with unmet clinical need related to drug resistance and immunotherapy focusing on ovarian and kidney cancers. The lab applies multi-parametric single-cell proteomic technologies (mass cytometry aka Cytometry by Time-Of-Flight (CyTOF) and multiplex imaging (CO-Detection by indEXing (CODEX)) combined with specialized computational approaches.

  • C. Garrison Fathman

    C. Garrison Fathman

    Professor of Medicine (Immunology and Rheumatology), Emeritus

    Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.

  • Michael Fayer

    Michael Fayer

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry

    BioMy research group studies complex molecular systems by using ultrafast multi-dimensional infrared and non-linear UV/Vis methods. A basic theme is to understand the role of mesoscopic structure on the properties of molecular systems. Many systems have structure on length scales large compare to molecules but small compared to macroscopic dimensions. The mesoscopic structures occur on distance scales of a few nanometers to a few tens of nanometers. The properties of systems, such as water in nanoscopic environments, room temperature ionic liquids, functionalized surfaces, liquid crystals, metal organic frameworks, water and other liquids in nanoporous silica, polyelectrolyte fuel cell membranes, vesicles, and micelles depend on molecular level dynamics and intermolecular interactions. Our ultrafast measurements provide direct observables for understanding the relationships among dynamics, structure, and intermolecular interactions.

    Bulk properties are frequently a very poor guide to understanding the molecular level details that determine the nature of a chemical process and its dynamics. Because molecules are small, molecular motions are inherently very fast. Recent advances in methodology developed in our labs make it possible for us to observe important processes as they occur. These measurements act like stop-action photography. To focus on a particular aspect of a time evolving system, we employ sequences of ultrashort pulses of light as the basis for non-linear methods such as ultrafast infrared two dimensional vibrational echoes, optical Kerr effect methods, and ultrafast IR transient absorption experiments.

    We are using ultrafast 2D IR vibrational echo spectroscopy and other multi-dimensional IR methods, which we have pioneered, to study dynamics of molecular complexes, water confined on nm lengths scales with a variety of topographies, molecules bound to surfaces, ionic liquids, and materials such as metal organic frameworks and porous silica. We can probe the dynamic structures these systems. The methods are somewhat akin to multidimensional NMR, but they probe molecular structural evolution in real time on the relevant fast time scales, eight to ten orders of magnitude faster than NMR. We are obtaining direct information on how nanoscopic confinement of water changes its properties, a topic of great importance in chemistry, biology, geology, and materials. For the first time, we are observing the motions of molecular bound to surfaces. In biological membranes, we are using the vibrational echo methods to study dynamics and the relationship among dynamics, structure, and function. We are also developing and applying theory to these problems frequently in collaboration with top theoreticians.

    We are studying dynamics in complex liquids, in particular room temperature ionic liquids, liquid crystals, supercooled liquids, as well as in influence of small quantities of water on liquid dynamics. Using ultrafast optical heterodyne detected optical Kerr effect methods, we can follow processes from tens of femtoseconds to ten microseconds. Our ability to look over such a wide range of time scales is unprecedented. The change in molecular dynamics when a system undergoes a phase change is of fundamental and practical importance. We are developing detailed theory as the companion to the experiments.

    We are studying photo-induced proton transfer in nanoscopic water environments such as polyelectrolyte fuel cell membranes, using ultrafast UV/Vis fluorescence and multidimensional IR measurements to understand the proton transfer and other processes and how they are influenced by nanoscopic confinement. We want to understand the role of the solvent and the systems topology on proton transfer dynamics.

  • Ron Fedkiw

    Ron Fedkiw

    Canon Professor in the School of Engineering

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Vivian Feig

    Vivian Feig

    Assistant Professor of Mechanical Engineering

    BioDr. Vivian Feig is an incoming Assistant Professor in the Mechanical Engineering department, beginning March 2024. The Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.

  • Carl Feinstein

    Carl Feinstein

    Professor of Psychiatry and Behavioral Sciences at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsAutism and Asperger's Disorder.

    Genetically-based neurodevelopmental disorder, including Velocardiofacial Syndrome, Smith-Magenis Syndrome, Williams Syndrome, and Fragile X Syndrome.

    Intellectual Disability (mental retardation) and psychiatric disorders.

    Developmental Language Disorder and Learning Disabilities.

    Sensory impairment in children, including visual and hearing impairment.

    Psychiatric aspects of medical illness and disability in children.

  • Jeffrey A. Feinstein, MD, MPH

    Jeffrey A. Feinstein, MD, MPH

    Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.

  • Jessica Feldman

    Jessica Feldman

    Associate Professor of Biology

    Current Research and Scholarly InterestsCell differentiation requires cells to polarize, translating developmental information into cell-type specific arrangements of intracellular structures. The major goal of the research in my laboratory is to understand how cells build these functional intracellular patterns during development, specifically focusing on the molecules and mechanisms that build microtubules at cell-type specific locations and the polarity cues that guide this patterning in epithelial cells.

  • Marcus Feldman

    Marcus Feldman

    Burnet C. and Mildred Finley Wohlford Professor

    Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • Stephen Felt, DVM, MPH

    Stephen Felt, DVM, MPH

    Professor of Comparative Medicine

    Current Research and Scholarly InterestsHis research interests include infectious diseases, particularly zoonoses, and exploring techniques which promote the health and welfare of laboratory animals.

  • Liang Feng

    Liang Feng

    Associate Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.

  • Russell D. Fernald

    Russell D. Fernald

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

  • David Fiorentino, MD, PhD

    David Fiorentino, MD, PhD

    Professor of Dermatology

    Current Research and Scholarly InterestsI am interested in all types of immune-mediated skin disease, with a focus on psoriasis and rheumatic skin disease. I co-direct a multi-disciplinary clinic dedicated to the care of patients with rheumatic skin diseases, such as lupus erythematosus, vasculitis, dermatyositis and scleroderma. I conduct multiple clinical trials and I participate in translational research with tissues obtained from a prospective cohort of patients with scleroderma, lupus, and dermatomyositis.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Michael Fischbach

    Michael Fischbach

    Liu (Liao) Family Professor

    Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.

    1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.

    2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:

    Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?

    Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?

    3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing.

  • Daniel Fisher

    Daniel Fisher

    David Starr Jordan Professor

    Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer

  • Dominik Fleischmann

    Dominik Fleischmann

    Professor of Radiology (Cardiovascular Imaging)

    Current Research and Scholarly InterestsNon-invasive Cardiovascular Imaging
    Image Post-processing
    Contrast Medium Dynamics

  • Sean Follmer

    Sean Follmer

    Associate Professor of Mechanical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Polly Fordyce

    Polly Fordyce

    Associate Professor of Bioengineering and of Genetics
    On Leave from 01/01/2014 To 08/31/2024

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Michael B. Fowler, MBBS, FRCP

    Michael B. Fowler, MBBS, FRCP

    Professor of Medicine (Cardiovascular), Emeritus

    Current Research and Scholarly InterestsAdrenergic nervous system; beta-adrenergic function in, heart failure; drugs in heart failure.

  • Emily Fox

    Emily Fox

    Professor of Statistics and of Computer Science

    BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.

    Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities.

  • Paige Fox, MD, PhD, FACS

    Paige Fox, MD, PhD, FACS

    Associate Professor of Surgery (Plastic and Reconstructive Surgery)

    BioDr. Paige Fox is Board Certified Plastic Surgeon who specializes in hand surgery, reconstructive microsurgery including facial reanimation, as well as peripheral nerve and brachial plexus surgery. She is an Associate Professor in the Division of Plastic and Reconstructive surgery in the Department of Surgery. She works with adult and pediatric patients. Her lab focuses on wound healing and nerve compression. She has clinical research interested in optimizing care of upper extremity and nerve disorders both in the US and internationally. Dr. Fox has a passion for sustainability and health care's effect on the environment. She is involved in efforts to green the OR and the clinics at Stanford.

  • Christopher Francis

    Christopher Francis

    Professor of Earth System Science, of Oceans and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMicrobial cycling of carbon, nitrogen, and metals in the environment; molecular geomicrobiology; marine microbiology; microbial diversity; meta-omics

  • Curtis Frank

    Curtis Frank

    W. M. Keck, Sr. Professor in Engineering, Emeritus

    BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.

    A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued.