Bio-X


Showing 851-878 of 878 Results

  • Joanna Wysocka

    Joanna Wysocka

    Lorry Lokey Professor and Professor of Developmental Biology

    Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.

  • Tony Wyss-Coray, PhD

    Tony Wyss-Coray, PhD

    D. H. Chen Professor II

    Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.

  • Yan Xia

    Yan Xia

    Assistant Professor of Chemistry

    Current Research and Scholarly InterestsOrganic Chemistry, Polymer Chemistry, Organic Optoelectronic Materials, Microporous Polymers, Responsive Polymers, Polymer Networks, Self-Assembly

  • Lei Xing

    Lei Xing

    Jacob Haimson Professor and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interestsartificial intelligence in medicine, Image-guided intervention, molecular imaging, biologically conformable radiation threapy (BCRT), treatment plan optimization, optimization, application of molecular imaging to radiation oncology.

  • Daniel Yamins

    Daniel Yamins

    Assistant Professor of Psychology and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:

    H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.

    H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.

    We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis.

  • Fan Yang

    Fan Yang

    Associate Professor of Orthopaedic Surgery and of Bioengineering

    Current Research and Scholarly InterestsOur research seeks to understand how microenvironmental cues regulate stem cell fate, and to develop novel biomaterials and stem cell-based therapeutics for tissue engineering and regenerative medicine. Our work spans from fundamental science, technology development, to translational research.We are particularly interested in developing better therapies for treating musculoskeletal diseases, cardiovascular diseases and cancer.

  • Phillip C. Yang, MD

    Phillip C. Yang, MD

    Associate Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Yang is a physician-scientist whose research interest focuses on clinical translation of the fundamental molecular and cellular processes of myocardial restoration. His research employs novel in vivo multi-modality molecular and cellular imaging technology to translate the basic innovation in cardiovascular pluripotent stem cell biologics. Dr. Yang is currently a PI on the NIH/NHLBI funded CCTRN UM1 grant, which is designed to conduct multi-center clinical trial on novel biological therapy.

  • Samuel Yang, MD, FACEP

    Samuel Yang, MD, FACEP

    Associate Professor of Emergency Medicine at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Yang's research is focused on bridging the translational gap at the interface of molecular biology, genome science, engineering, and acute care medicine. The investigative interest of the Yang lab falls within the general theme of developing integrative systems-level approaches for precision diagnostics, as well as data driven knowledge discoveries, to improve the health outcome and our understanding of complex critical illnesses. Using sepsis as the disease model with complex host-pathogen dynamics, the goals of the Yang lab are divided into 2 areas:

    1) Developing high-content, near-patient, diagnostic system for rapid broad pathogen detection and characterization.

    2) Integrating multi-omics molecular and phenotypic data layers with novel computational approaches into AI-assisted diagnostics and predictive analytics for sepsis.

  • Yanmin Yang

    Yanmin Yang

    Associate Professor of Neurology

    Current Research and Scholarly InterestsElucidate biological functions of cytoskeletal associated proteins in neurons. Define the cellular and molecular mechanisms underlying neurodegeneration in null mice.

  • Yunzhi Peter Yang

    Yunzhi Peter Yang

    Associate Professor of Orthopaedic Surgery and, by courtesy, of Materials Science and Engineering and of Bioengineering

    Current Research and Scholarly InterestsYang’ lab's research interests are in the areas of bio-inspired biomaterials, medical devices, and 3D printing approaches for re-creating a suitable microenvironment for cell growth and tissue regeneration for musculoskeletal disease diagnosis and treatment, including multiple tissue healing such as rotator cuff injury, orthopedic diseases such as osteoporosis and osteonecrosis, and orthopedic traumas such as massive bone and muscle injuries.

  • Jiangbin Ye

    Jiangbin Ye

    Assistant Professor of Radiation Oncology

    Current Research and Scholarly InterestsOne hallmark of cancer is that malignant cells modulate metabolic pathways to promote cancer progression. My professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of cancer cells in response to microenvironmental stresses such as hypoxia and nutrient deprivation, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment.

  • Ellen Yeh

    Ellen Yeh

    Assistant Professor of Biochemistry, of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe chemistry and biology of the unusual plastid organelle, the apicoplast, in malaria parasites

  • David C. Yeomans

    David C. Yeomans

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsPhysiology of different pain types; Biomarkers of pain and inflammation; Gene Therapy for Pain

  • Paul Yock, MD

    Paul Yock, MD

    The Martha Meier Weiland Professor in the School of Medicine, Professor of Bioengineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsHealth technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.

  • Jong H. Yoon

    Jong H. Yoon

    Associate Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsMy research seeks to discover the brain mechanisms responsible for schizophrenia and to translate this knowledge into the clinic to improve how we diagnose and treat this condition. Towards these ends, our group has been developing cutting-edge neuroimaging tools to identify neurobiological abnormalities and test novel systems-level disease models of psychosis and schizophrenia directly in individuals with these conditions.

    We have been particularly interested in the role of neocortical-basal ganglia circuit dysfunction. A working hypothesis is that some of the core symptoms of schizophrenia are attributable to impairments in neocortical function that results in disconnectivity with components of the basal ganglia and dysregulation of their activity. The Yoon Lab has developed new high-resolution functional magnetic resonance imaging methods to more precisely measure the function of basal ganglia components, which given their small size and location deep within the brain has been challenging. This includes ways to measure the activity of nuclei that store and control the release of dopamine throughout the brain, a neurochemical that is one of the most important factors in the production of psychosis in schizophrenia and other neuropsychiatric conditions.

  • Greg Zaharchuk

    Greg Zaharchuk

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsImproving medical image quality using deep learning artificial intelligence
    Imaging of cerebral hemodynamics with MRI and CT
    Noninvasive oxygenation measurement with MRI
    Clinical imaging of cerebrovascular disease
    Imaging of cervical artery dissection
    MR/PET in Neuroradiology
    Resting-state fMRI for perfusion imaging and stroke

  • Jamil Zaki

    Jamil Zaki

    Associate Professor of Psychology

    Current Research and Scholarly InterestsMy research focuses on the cognitive and neural bases of social behavior, and in particular on how people respond to each other's emotions (empathy), why they conform to each other (social influence), and why they choose to help each other (prosociality).

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Christopher K. Zarins

    Christopher K. Zarins

    Walter Clifford Chidester and Elsa Rooney Chidester Professor of Surgery, Emeritus

    Current Research and Scholarly InterestsHemodynamic factors in atherosclerosis, pathogenesis of, aortic aneurysms, carotid plaque localization and complication, anastomotic intimal hyperplasia, vascular biology of artery wall, computational fluid dynamics as applied to blood flow and vascular disease.

  • James L. Zehnder, M.D.

    James L. Zehnder, M.D.

    Professor of Pathology (Research) and of Medicine (Hematology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsOur laboratory focuses on translational research in 2 main areas - genomic approaches to diagnosis and minimal residual disease testing for patients with cancer, and molecular basis of disorders of thrombosis and hemostasis. My clinical focus is in molecular pathology, diagnosis and treatment of disorders of hemostasis and thrombosis and general hematology.

  • Michael Zeineh

    Michael Zeineh

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) at the Stanford University Medical Center

    BioDr. Michael Zeineh received a B.S. in Biology at Caltech in 1995 and obtained his M.D.-Ph.D. from UCLA in 2003. After internship also at UCLA, he went on to radiology residency and neuroradiology fellowship both at Stanford. He has been an assistant professor of radiology since 2010. Combining clinical acumen in neuroradiology with advanced MRI acquisition and image processing as well as histologic validation, Dr. Zeineh hopes to advance the care of patients with neurodegenerative disorders. In particular, he is interested in Alzheimer's disease, sports-related mild traumatic brain injury, and chronic fatigue syndrome. Additionally, he is specifically interested and has over 20 years of experience studying hippocampal anatomy and pathology.

  • Jamie Zeitzer

    Jamie Zeitzer

    Associate Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsDr. Zeitzer is a circadian physiologist specializing in the understanding of the impact of light on circadian rhythms and other aspects of non-image forming light perception.
    He examines the manner in which humans respond to light and ways to manipulate this responsiveness, with direct application to jet lag, shift work, and altered sleep timing in teens. Dr. Zeitzer has also pioneered the use of actigraphy in the determination of epiphenomenal markers of psychiatric disorders.

  • Heng Zhao

    Heng Zhao

    Professor (Research) of Neurosurgery

    Current Research and Scholarly InterestsMy lab is focused on developing novel therapeutic methods against stroke using rodent models. We study protective effect of postconditioning, preconditioning and mild hypothermia. The rationale for studying three means of neuroprotection is that we may discover mechanisms that these treatments have in common. Conversely, if they have differing mechanisms, we will be able to offer more than one treatment for stroke and increase a patient’s chance for recovery.

  • Xiaolin Zheng

    Xiaolin Zheng

    Associate Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioProfessor Zheng received her Ph.D. in Mechanical & Aerospace Engineering from Princeton University (2006), B.S. in Thermal Engineering from Tsinghua University (2000). Prior to joining Stanford in 2007, Professor Zheng did her postdoctoral work in the Department of Chemistry and Chemical Biology at Harvard University. Professor Zheng is a member of MRS, ACS and combustion institute. Professor Zheng received the TR35 Award from the MIT Technology Review (2013), one of the 100 Leading Global Thinkers by the Foreign Policy Magazine (2013), 3M Nontenured Faculty Grant Award (2013), the Presidential Early Career Award (PECASE) from the white house (2009), Young Investigator Awards from the ONR (2008), DARPA (2008), Terman Fellowship from Stanford (2007), and Bernard Lewis Fellowship from the Combustion Institute (2004).

  • Roseanna N. Zia

    Roseanna N. Zia

    Assistant Professor of Chemical Engineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsThe Zia Group seeks answers to 3 Grand Challenge questions utilizing theory and computational analysis of complex fluids:
    1. Understand the mechanical nature of the origin of life.
    2. Elucidate the mechanics of the (colloidal) glass transition and kinetic arrest.
    3. Develop generalized non-equilibrium fluctuation-dissipation theory for soft matter.
    Though seemingly disparate avenues of inquiry, they are deeply and surprisingly connected by fluid and suspension mechanics.

  • J. Bradley Zuchero

    J. Bradley Zuchero

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsGlia are a frontier of neuroscience, and overwhelming evidence from the last decade shows that they are essential regulators of all aspects of the nervous system. The Zuchero Lab aims to uncover how glial cells regulate neural development and how their dysfunction contributes to diseases like multiple sclerosis (MS) and in injuries like stroke.

    Although glia represent more than half of the cells in the human brain, fundamental questions remain to be answered. How do glia develop their highly specialized morphologies and interact with neurons to powerfully control form and function of the nervous system? How is this disrupted in neurodegenerative diseases and after injury? By bringing cutting-edge cell biology techniques to the study of glia, we aim to uncover how glia help sculpt and regulate the nervous system and test their potential as novel, untapped therapeutic targets for disease and injury.

    We are particularly interested in myelin, the insulating sheath around neuronal axons that is lost in diseases like MS. How do oligodendrocytes- the glial cell that produces myelin in the central nervous system- form and remodel myelin, and why do they fail to regenerate myelin in disease? Our current projects aim to use cell biology and neuroscience approaches to answer these fundamental questions. Ultimately we hope our work will lead to much-needed therapies to promote remyelination in patients.