School of Engineering
Showing 301-400 of 526 Results
-
Louie Montoya
Lecturer
BioA self-proclaimed deeper learning education nerd, Louie Montoya joined the d.school in 2018 to work with educators on learning and implementing design in the classroom. Today he leads the Deeper Learning Puzzle Bus, a K12 lab mobile experiment designed to look at how “escape rooms” can change the way educators think about measurement and assessment, as well as bring more delight into the classroom.
A first generation Mexican American raised across the western hemisphere, Louie developed an interest in other cultures that anchors his work on behalf of equitable practices in the design process. As an experience designer at the Business Innovation Factory in Rhode Island, Louie co-designed and ran the Teachers for Equity Fellowship that worked with educators across the United States to address issues of racial inequity in their schools and classrooms. As a member of the Deeper Learning network Louie focuses on building capacity around skills such as collaboration, communication and critical thinking with students. -
Walter Murray
Professor (Research) of Management Science and Engineering, Emeritus
BioProfessor Murray's research interests include numerical optimization, numerical linear algebra, sparse matrix methods, optimization software and applications of optimization. He has authored two books (Practical Optimization and Optimization and Numerical Linear Algebra) and over eighty papers. In addition to his University work he has extensive consulting experience with industry, government, and commerce.
-
Sanjiv Narayan
Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsDr. Narayan directs the Computational Arrhythmia Research Laboratory, whose goal is to define the mechanisms underlying complex human heart rhythm disorders, to develop bioengineering-focused solutions to improve therapy that will be tested in clinical trials. The laboratory has been funded continuously since 2001 by the National Institutes of Health, AHA and ACC, and interlinks a disease-focused group of clinicians, computational physicists, bioengineers and trialists.
-
Brett Newman
Lecturer
BioAcademic
2013 - 2018 : Stanford : Lecturer : Visual Thinking, ME115C: Design and Business Factors
2018 - Present : Stanford : Lead Lecturer : Design 161 Capstone
Professional
2004 - 2007 : Azud : VP Product
2007 - Present : Daylight Design : Partner -
Brad Osgood
Professor of Electrical Engineering and, by courtesy, in Education
BioOsgood is a mathematician by training and applies techniques from analysis and geometry to various engineering problems. He is interested in problems in imaging, pattern recognition, and signal processing.
-
Julia Palacios
Associate Professor of Statistics and of Biomedical Data Science
BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.
-
Arogyaswami Paulraj
Professor (Research) of Electrical Engineering, Emeritus
BioProf. Arogyaswami Paulraj is an Emeritus Professor at Stanford University. Paulraj's legacy is deeply intertwined with the evolution of wireless communication. His groundbreaking work on MIMO (multiple input, multiple output) technology laid the foundation for today's ubiquitous 4G/5G networks and high-speed Wi-Fi.
Paulraj's journey began in the Indian Navy, where he served from 1965 to 1991. During this time, he led the development of the APSOH anti-submarine sonar system and established three key R&D labs for the Indian government. His contributions earned him the prestigious Padma Bhushan award, India's third highest civilian honor.
Following his naval career, Paulraj joined Stanford University as a postdoctoral researcher. His research focus shifted to wireless communication, where he made groundbreaking contributions to MIMO technology. MIMO enables data transmission using multiple antennas, significantly increasing network capacity and data rates.
Paulraj's innovation has been recognized with numerous accolades, including the 2024 Royal Acad. Eng. Prince Philip Medal, the 2023 IET Faraday Medal, the 2014 Marconi Prize, and the 2011 IEEE Alexander Graham Bell Medal. He is also a fellow of nine national academies in engineering, sciences, and the arts, and an inductee of the US Patent Office’s National Inventors Hall of Fame.
Currently, Paulraj continues to contribute to technological advancement. He chairs several committees for the Government of India, focusing on the Indian Semiconductor Mission and Core ICT initiatives. His dedication to research and development continues to shape the future of wireless communication. -
Marco Pavone
Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.
-
Markus Pelger
Associate Professor of Management Science and Engineering
Current Research and Scholarly InterestsHis research focuses on understanding and managing financial risk. He develops mathematical financial models and statistical methods, analyzes financial data and engineers computational techniques. His research is divided into three streams: machine learning solutions to big-data problems in empirical asset pricing, statistical theory for high-dimensional data and stochastic financial modeling.
-
Mert Pilanci
Assistant Professor of Electrical Engineering
Current Research and Scholarly InterestsDr. Pilanci's research interests include neural networks, machine learning, mathematical optimization, information theory and signal processing.
-
Peter Pinsky
Professor of Mechanical Engineering, Emeritus
BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.
-
Jim Plummer
John M. Fluke Professor of Electrical Engineering. Emeritus
Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.
-
Ada Poon
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.
-
Eric Pop
Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics
Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.
-
Robert Prakash
Managing Director & Chief Technology Officer, Stanford Engineering Center for Global and Online Education
Current Role at StanfordChief Technology Officer & Managing Director, Product and Finance, Stanford Engineering | Center for Global & Online Education
-
Adrienne Propp
Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2021
BioI am a fourth year PhD student in ICME (the Institute for Computational and Mathematical Engineering). Prior to Stanford, I was working as a technical analyst at the RAND Corporation where I spent most of my time designing microsimulations and other models to investigate topics in healthcare, education, disaster relief, and international relations.
My research interests lie at the intersection of mathematics, data, and modeling, which has led me to a focus on scientific machine learning (SciML). Specifically, I am working on developing new graph-based surrogate modeling methods for low-data regimes. I am grateful to be advised by Daniel Tartakovsky, During my PhD, I have also collaborated with Jenny Suckale to model volcanic lava fountaining, and Susan Athey and Sanath Kumar Krishnamurthy to design improved algorithms for contextual bandits.
Past research projects have ranged from computational models of the heart to inverse modeling to predict satellite performance. -
Ashwin Rao
Adjunct Professor, Institute for Computational and Mathematical Engineering (ICME)
BioMy current research and teaching is in Machine Learning (specifically RL) with applications to Financial Markets and Retail businesses. My academic origins are in Algorithms Theory and Abstract Algebra. More details on my background are here: https://www.linkedin.com/in/ashwin2rao/
My Stanford Home Page: https://stanford.edu/~ashlearn
CME 241 ("RL for Finance"), which I teach each Winter quarter: http://cme241.stanford.edu -
Christopher Re
Professor of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsAlgorithms, systems, and theory for the next generation of data processing and data analytics systems.
-
Juan Rivas-Davila
Associate Professor of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy
Current Research and Scholarly InterestsModern applications demand power capabilities beyond what is presently achievable. High performance systems need high power density and bandwidth that are difficult to achieve.
Power density can be improved with better semiconductors and passive componets, and by reducing the energy storage requirements of the system. By dramatically increasing switching frequency it is possible to reduce size of power converters. I'm interested in high performance/frequency circuits switching >10 MHz. -
Judith Romero
Chief Communications Officer, SCPD and Stanford Online, Stanford Engineering Center for Global and Online Education
Current Role at StanfordChief Communications Officer for the Stanford Engineering Center for Global & Online Education (CGOE) and Stanford Online. Responsible for web and social media sites, for public information and media relations, and for brand strategy and global marketing.
-
Noah Rosenberg
Stanford Professor of Population Genetics and Society
Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics
-
Grant M. Rotskoff
Assistant Professor of Chemistry
BioGrant Rotskoff studies the nonequilibrium dynamics of living matter with a particular focus on self-organization from the molecular to the cellular scale. His work involves developing theoretical and computational tools that can probe and predict the properties of physical systems driven away from equilibrium. Recently, he has focused on characterizing and designing physically accurate machine learning techniques for biophysical modeling. Prior to his current position, Grant was a James S. McDonnell Fellow working at the Courant Institute of Mathematical Sciences at New York University. He completed his Ph.D. at the University of California, Berkeley in the Biophysics graduate group supported by an NSF Graduate Research Fellowship. His thesis, which was advised by Phillip Geissler and Gavin Crooks, developed theoretical tools for understanding nonequilibrium control of the small, fluctuating systems, such as those encountered in molecular biophysics. He also worked on coarsegrained models of the hydrophobic effect and self-assembly. Grant received an S.B. in Mathematics from the University of Chicago, where he became interested in biophysics as an undergraduate while working on free energy methods for large-scale molecular dynamics simulations.
Research Summary
My research focuses on theoretical and computational approaches to "mesoscale" biophysics. Many of the cellular phenomena that we consider the hallmarks of living systems occur at the scale of hundreds or thousands of proteins. Processes like the self-assembly of organelle-sized structures, the dynamics of cell division, and the transduction of signals from the environment to the machinery of the cell are not macroscopic phenomena—they are the result of a fluctuating, nonequilibrium dynamics. Experimentally probing mesoscale systems remains extremely difficult, though it is continuing to benefit from advances in cryo-electron microscopy and super-resolution imaging, among many other techniques. Predictive and explanatory models that resolve the essential physics at these intermediate scales have the power to both aid and enrich the understanding we are presently deriving from these experimental developments.
Major parts of my research include:
1. Dynamics of mesoscale biophysical assembly and response.— Biophysical processes involve chemical gradients and time-dependent external signals. These inherently nonequilibrium stimuli drive supermolecular organization within the cell. We develop models of active assembly processes and protein-membrane interactions as a foundation for the broad goal of characterizing the properties of nonequilibrium biomaterials.
2. Machine learning and dimensionality reduction for physical models.— Machine learning techniques are rapidly becoming a central statistical tool in all domains of scientific research. We apply machine learning techniques to sampling problems that arise in computational chemistry and develop approaches for systematically coarse-graining physical models. Recently, we have also been exploring reinforcement learning in the context of nonequilibrium control problems.
3. Methods for nonequilibrium simulation, optimization, and control.— We lack well-established theoretical frameworks for describing nonequilibrium states, even seemingly simple situations in which there are chemical or thermal gradients. Additionally, there are limited tools for predicting the response of nonequilibrium systems to external perturbations, even when the perturbations are small. Both of these problems pose key technical challenges for a theory of active biomaterials. We work on optimal control, nonequilibrium statistical mechanics, and simulation methodology, with a particular interest in developing techniques for importance sampling configurations from nonequilibrium ensembles. -
Victor Saad
Lecturer, d.school
BioIn 2012, I designed my own Masters by completing 12 projects in 12 months. I called it The Leap Year Project and my experiences culminated with staging my graduation at a local TEDx and publishing a book of stories focused on the power of learning through risk. I later launched Experience Institute, an organization helping college students and career professionals learn and grow through real-world experiences.
In 2015, I was inducted into Forbes 30 Under 30 in the field of education. And in 2017, I joined the team at Stanford’s d.school as a Lecturer in Design, helping students reimagine their learning through experience. -
Amin Saberi
Professor of Management Science and Engineering and, by courtesy, of Computer Science
BioAmin Saberi is Professor of Management Science and Engineering at Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, design and analysis of social networks, and applications. He is a recipient of the Terman Fellowship, Alfred Sloan Fellowship and several best paper awards.
Amin was the founding CEO and chairman of NovoEd Inc., a social learning environment designed in his research lab and used by universities such as Stanford as well as non-profit and for-profit institutions for offering courses to hundreds of thousands of learners around the world. -
Maria Sakovsky
Assistant Professor of Aeronautics and Astronautics
BioMaria Sakovsky's work focuses on the use of shape adaptation to realize space structures with reconfigurable geometry, stiffness, and even non-mechanical performance (e.g., electromagnetic, optical). Particular focus is placed on the mechanics of thin fiber reinforced composite structures, the interplay between composite material properties and structural geometry, as well as embedded functionality and actuation of lightweight structures. The work has led to applications in deployable space structures, reconfigurable antennas, and soft robotics.
Maria Sakovsky received her BSc in Aerospace Engineering from the University of Toronto. Following this, she completed her MSc and PhD in Space Engineering at Caltech, where she developed a deployable satellite antenna based on origami concepts utilizing elastomer composites. She concurrently worked with NASA’s Jet Propulsion Laboratory on developing cryogenically rated thin-ply composite antennas for deep space missions. She was awarded the ETH Zurich Postdoctoral Fellowship in 2018 as well as the DARPA Young Faculty Award in 2024. -
Alberto Salleo
Hong Seh and Vivian W. M. Lim Professor and Professor, by courtesy, of Photon Science
Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.