Stanford University


Showing 1-100 of 110 Results

  • Stephen J. Galli, MD

    Stephen J. Galli, MD

    Mary Hewitt Loveless, MD, Professor in the School of Medicine and Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe goals of Dr. Galli's laboratory are to understand the regulation of mast cell and basophil development and function, and to develop and use genetic approaches to elucidate the roles of these cells in health and disease. We study both the roles of mast cells, basophils, and IgE in normal physiology and host defense, e.g., in responses to parasites and in enhancing resistance to venoms, and also their roles in pathology, e.g., anaphylaxis, food allergy, and asthma, both in mice and humans.

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Member, Bio-X

    Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Alex Gao

    Alex Gao

    Assistant Professor of Biochemistry

    Current Research and Scholarly InterestsNature has created many powerful biomolecules that are hidden in organisms across kingdoms of life. Many of these biomolecules originate from microbes, which contain the most diverse gene pool among living organisms. We are integrating high-throughput computational and experimental approaches to harness the vast diversity of genes in microbes to develop new antibiotics and molecular biotechnology, and to investigate the evolution of proteins and molecular mechanisms in innate immunity.

  • Xiaojing Gao

    Xiaojing Gao

    Assistant Professor of Chemical Engineering

    Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.

  • Alan M. Garber

    Alan M. Garber

    Henry J. Kaiser Jr. Professor and Professor of Medicine, Emeritus

    Current Research and Scholarly InterestsTopics in the health economics of aging; health, insurance; optimal screening intervals; cost-effectiveness of, coronary surgery in the elderly; health care financing and delivery, in the United States and Japan; coronary heart disease

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Christopher Gardner

    Christopher Gardner

    Rehnborg Farquhar Professor

    Current Research and Scholarly InterestsThe role of nutrition in individual and societal health, with particular interests in: plant-based diets, differential response to low-carb vs. low-fat weight loss diets by insulin resistance status, chronic disease prevention, randomized controlled trials, human nutrition, community based studies, Community Based Participatory Research, sustainable food movement (animal rights and welfare, global warming, human labor practices), stealth health, nutrition policy, nutrition guidelines

  • Justin Gardner

    Justin Gardner

    Associate Professor of Psychology

    Current Research and Scholarly InterestsHow does neural activity in the human cortex create our sense of visual perception? We use a combination of functional magnetic resonance imaging, computational modeling and analysis, and psychophysical measurements to link human perception to cortical brain activity.

  • Joseph Garner

    Joseph Garner

    Professor of Comparative Medicine and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe medical research community has long recognized that "good well-being is good science". The lab uses an integrated interdisciplinary approach to explore this interface, while providing tangible deliverables for the well-being of human patients and research animals.

  • Matthias Garten

    Matthias Garten

    Assistant Professor of Microbiology and of Bioengineering

    BioMatthias Garten, Ph.D., is an assistant professor in the department of Immunology and Microbiology and the department of Bioengineering. He is a membrane biophysicist who is driven by the question of how the malaria parasite interfaces with its host-red blood cell, how we can use the unique mechanisms of the parasite to treat malaria and to re-engineer cells for biomedical applications.

    He obtained a physics master's degree from the Dresden University of Technology, Germany with a thesis in the laboratory of Dr. Petra Schwille and his Ph.D. life sciences from the University Paris Diderot, France through his work in the lab of Dr. Patricia Bassereau (Insitut Curie) investigating electrical properties of lipid membranes and protein - membrane interactions using biomimetic model systems, giant liposomes and planar lipid membranes.

    In his post-doctoral work at the National Institutes of Health, Bethesda in the laboratory of Dr. Joshua Zimmerberg, he used molecular, biophysical and quantitative approaches to research the malaria parasite. His work led to the discovery of structure-function relationships that govern the host cell – parasite interface, opening research avenues to understand how the parasite connects to and controls its host cell.

  • Brice Gaudilliere

    Brice Gaudilliere

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult-MSD) and, by courtesy, of Pediatrics (Neonatology)

    Current Research and Scholarly InterestsThe advent of high dimensional flow cytometry has revolutionized our ability to study and visualize the human immune system. Our group combines high parameter mass cytometry (a.k.a Cytometry by Time of Flight Mass Spectrometry, CyTOF), with advanced bio-computational methods to study how the human immune system responds and adapts to acute physiological perturbations. The laboratory currently focuses on two clinical scenarios: surgical trauma and pregnancy.

  • Charles Gawad

    Charles Gawad

    Associate Professor of Pediatrics (Hematology/Oncology)

    BioOur lab works at the interface of biotechnology, computational biology, cellular biology, and clinical medicine to develop and apply new tools for characterizing genetic variation across single cells within a tissue with unparalleled sensitivity and accuracy. We are focused on applying these technologies to study cancer clonal evolution while patients are undergoing treatment with the aim of identifying cancer clonotypes that are associated with resistance to specific drugs so as to better understand and predict treatment response. We are also applying these methods to understand how more virulent pathogens emerge from a population of bacteria or viruses with an emphasis on developing a deeper understanding of how antibiotic resistance develops.

  • Pascal Geldsetzer

    Pascal Geldsetzer

    Assistant Professor of Medicine (Primary Care and Population Health) and, by courtesy, of Epidemiology and Population Health

    BioPascal Geldsetzer is an Assistant Professor of Medicine in the Division of Primary Care and Population Health and, by courtesy, in the Department of Epidemiology and Population Health. He is also affiliated with the Department of Biomedical Data Science, Department of Health Policy, King Center for Global Development, and the Stanford Centers for Population Health Sciences, Innovation in Global Health, and Artificial Intelligence in Medicine & Imaging.

    His research focuses on identifying and evaluating the most effective interventions for improving health at older ages. In addition to leading several randomized trials, his methodological emphasis lies on the use of quasi-experimental approaches to ascertain causal effects in large observational datasets, particularly in electronic health record data. He has won an NIH New Innovator Award (in 2022), a Chan Zuckerberg Biohub investigatorship (in 2022), and two NIH R01 grants as Principal Investigator (both in 2023).

  • Michael Genesereth

    Michael Genesereth

    Associate Professor of Computer Science

    BioGenesereth is most known for his work on Computational Logic and applications of that work in Enterprise Management, Computational Law, and General Game Playing. He is one of the founders of Teknowledge, CommerceNet, Mergent Systems, and Symbium. Genesereth is the director of the Logic Group at Stanford and the founder and research director of CodeX - the Stanford Center for Legal Informatics.

  • Michael Gensheimer

    Michael Gensheimer

    Clinical Associate Professor, Radiation Oncology - Radiation Therapy

    Current Research and Scholarly InterestsIn addition to my clinical research in head and neck and lung cancer, I work on the application of computer science and machine learning to cancer research. I develop tools for analyzing large datasets to improve outcomes and safety of cancer treatment. I developed a machine learning prognostic model using data from around 13,000 patients with metastatic cancer which performs better than traditional models and physicians [PubMed ID 33313792]. We recently completed a prospective randomized study in thousands of patients in which the model was used to help improve advance care planning conversations.

    I also work on the methods underpinning observational and predictive modeling research. My open source nnet-survival software that allows use of neural networks for survival modeling has been used by researchers internationally. In collaboration with the Stanford Research Informatics Center, I examined how electronic medical record (EMR) survival outcome data compares to gold-standard data from a cancer registry [PubMed ID 35802836]. The EMR data captured less than 50% of deaths, a finding that affects many studies being published that use EMR outcomes data.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Emerita

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    Teaching
    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Olivier Gevaert

    Olivier Gevaert

    Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Shambhu Ghimire

    Shambhu Ghimire

    Lead Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordPrincipal Investigator in a DOE-funded research area: High-order Harmonic Generation (HHG)

  • Sadegh Ghorbani

    Sadegh Ghorbani

    Visiting Post Doc, Geballe Laboratory for Advanced Materials
    Affiliate, Program-Heilshorn, S.

    BioA biotechnologist with a focus on protein-based hydrogels, aimed at exploring the intricate processes of neurogenesis, brain tumors, and the signaling pathways governing their cell-cell and cell-matrix adhesion. Through the utilization of customizable hydrogels that incorporate cell-adhesive sequences, our primary objective is to mimic the native microenvironment of the nervous system within 3D systems, allowing us to discern the intricate responses of cells on engineered and functional bio-interfaces. My work is driven by dual-core objectives. Firstly, I am committed to enhancing the treatment of peripheral nerve injuries by devising a therapeutic approach that is both efficient and effective. Secondly, I am involved in investigating the complex interactions between brain cancer cells and neuronal cells in precisely defined microenvironments.

    #Biomaterials #Biointerface #Tissue_engineering #Neuroscience #Brain_tumors #Biotechnology #Cellular_biology

  • Amato J. Giaccia

    Amato J. Giaccia

    Jack, Lulu and Sam Willson Professor, Professor of Radiation Oncology, Emeritus

    Current Research and Scholarly InterestsDuring the last five years, we have identified several small molecules that kill VHL deficient renal cancer cells through a synthetic lethal screening approach. Another major interest of my laboratory is in identifying hypoxia-induced genes involved in invasion and metastases. We are also investigating how hypoxia regulates gene expression epigenetically.

  • William Giardino

    William Giardino

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsThe Giardino Laboratory: our group aims to decipher the neural mechanisms underlying psychiatric conditions of stress, addiction, and sleep disturbances. Our work uses combinatorial technologies for precisely mapping, monitoring, and manipulating neural circuits that drive hedonic and homeostatic states. Projects in the lab are funded by the National Institutes of Health (NIAAA), the Whitehall Foundation, and the Brain Research Foundation.

  • Erin Gibson

    Erin Gibson

    Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.

  • Rona Giffard

    Rona Giffard

    Professor of Anesthesiology, Perioperative and Pain Medicine, Emerita

    Current Research and Scholarly InterestsAstrocytes, microglia and neurons interact, and have unique vulnerabilities to injury based on their patterns of gene expression and their functional roles. We focus on the cellular and molecular basis of brain cell injury in stroke. We study the effects of altering miRNA expression, altering levels of heat shock and cell death regulatory proteins. Our goal is to improve outcome by improving mitochondrial function and brain cell survival, and reducing oxidative stress and inflammation.

  • William Gilly

    William Gilly

    Professor of Oceans

    Current Research and Scholarly InterestsMy work has contributed to understanding electrical excitability in nerve & muscle in organisms ranging from brittle-stars to mammals. Current research addresses behavior, physiology and ecology of squid through field and lab approaches. Electronic tagging plus in situ video, acoustic and oceanographic methods are used to study behaviors and life history in the field. Lab work focuses on control of chromogenic behavior by the chromatophore network and of locomotion by the giant axon system.

  • Lisa Giocomo

    Lisa Giocomo

    Professor of Neurobiology

    Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.

  • Nicholas Giori MD, PhD

    Nicholas Giori MD, PhD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsOsteoarthritis
    Medical Device Development

  • Aaron D. Gitler

    Aaron D. Gitler

    Stanford Medicine Basic Science Professor

    Current Research and Scholarly InterestsWe investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.

  • Linda Giudice

    Linda Giudice

    Stanley McCormick Memorial Professor in the School of Medicine, Emerita

    Current Research and Scholarly InterestsOur research is in reproductive endocrinology and reproductive genomics. It focuses on human endometrial biology as it relates to basic biological mechanisms underlying steroid hormone action in this tissue, normal and abnormal placenta-decidua interactions, mechanisms underlying placentation and abnormal fetal growth, endometrial stem cells, and functional genomics for diagnostics and therapeutics of endometrial disorders. We also study mechanisms underlying ovarian follicle steroidogenesis.

  • Jeffrey S.  Glenn, M.D., Ph.D.

    Jeffrey S. Glenn, M.D., Ph.D.

    Joseph D. Grant Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.

  • Siegfried Glenzer

    Siegfried Glenzer

    Professor of Photon Science and, by courtesy, of Mechanical Engineering
    On Leave from 09/15/2023 To 09/14/2024

    Current Research and Scholarly InterestsPlease see our website for detailed information: https://heds.slac.stanford.edu

  • Gary Glover

    Gary Glover

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering

    Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.

  • Anna L Gloyn

    Anna L Gloyn

    Professor of Pediatrics (Endocrinology) and of Genetics

    Current Research and Scholarly InterestsAnna's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.

  • Gopi Shah Goda

    Gopi Shah Goda

    Senior Fellow at the Stanford Institute for Economic Policy Research and Professor, by courtesy, of Economics and of Health Policy

    BioGopi Shah Goda is a Senior Fellow at the Stanford Institute for Economic Policy Research (SIEPR), Associate Professor of Health Policy (by courtesy) and Professor of Economics (by courtesy) at Stanford University. Gopi served as a senior economist at the White House Council of Economic Advisers from July 2021 to July 2022. She is also a Faculty Research Fellow at the National Bureau of Economic Research, a Fellow of the Society of Actuaries, and served as SIEPR's Deputy Director from September 2016 to July 2021.

    Gopi’s research focuses on the well-being of individuals as they age, the sustainability of public programs serving elderly and vulnerable populations, and the broader implications of the COVID-19 pandemic on health and labor supply. Her recent research studies examine the effects of long-term care insurance on family members’ work and location decisions, and how COVID-19 illness affects U.S. workers. Her work has appeared in a variety of leading economics journals, and has and has garnered coverage in major media outlets such as the Wall Street Journal, the New York Times, the Washington Post, National Public Radio, the Guardian, and the San Francisco Chronicle. Gopi's research has been supported by the Social Security Administration, the National Institutes on Aging, the Alfred P. Sloan Foundation and the TIAA Institute.

    Prior to joining SIEPR, Gopi was a Robert Wood Johnson Scholar in Health Policy Research at Harvard University. She earned her PhD in economics from Stanford University in 2007 and her B.S. in mathematics and actuarial science from the University of Nebraska – Lincoln in 2000.

  • Ashish Goel

    Ashish Goel

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.

  • Lauren Goins

    Lauren Goins

    Assistant Professor of Developmental Biology

    Current Research and Scholarly InterestsThe Goins lab aims to understand how cells make decisions. Our research focuses on how young, immature blood stem cells, with the potential to become many different cell types, choose between these cell fates.

  • Garry Gold

    Garry Gold

    Stanford Medicine Professor of Radiology and Biomedical Imaging

    Current Research and Scholarly InterestsMy primary focus is application of new MR imaging technology to musculoskeletal problems. Current projects include: Rapid MRI for Osteoarthritis, Weight-bearing cartilage imaging with MRI, and MRI-based models of muscle. We are studying the application of new MR imaging techniques such as rapid imaging, real-time imaging, and short echo time imaging to learn more about biomechanics and pathology of bones and joints. I am also interested in functional imaging approaches using PET-MRI.

  • Jeffrey Goldberg, MD, PhD

    Jeffrey Goldberg, MD, PhD

    Blumenkranz Smead Professor

    Current Research and Scholarly InterestsLab research on molecular mechanisms of survival and regeneration in the visual system; retinal development and stem cell biology; nanoparticles and tissue engineering. Clinical trials in imaging, biomarker development, and neuroprotection and vision restoration in glaucoma and other neurodegenerative diseases.

  • David Goldhaber-Gordon

    David Goldhaber-Gordon

    Professor of Physics and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsHow do electrons organize themselves on the nanoscale?

    We know that electrons are charged particles, and hence repel each other; yet in common metals like copper billions of electrons have plenty of room to maneuver and seem to move independently, taking no notice of each other. Professor Goldhaber-Gordon studies how electrons behave when they are instead confined to tiny structures, such as wires only tens of atoms wide. When constrained this way, electrons cannot easily avoid each other, and interactions strongly affect their organization and flow. The Goldhaber-Gordon group uses advanced fabrication techniques to confine electrons to semiconductor nanostructures, to extend our understanding of quantum mechanics to interacting particles, and to provide the basic science that will shape possible designs for future transistors and energy conversion technologies. The Goldhaber-Gordon group makes measurements using cryogenics, precision electrical measurements, and novel scanning probe techniques that allow direct spatial mapping of electron organization and flow. For some of their measurements of exotic quantum states, they cool electrons to a fiftieth of a degree above absolute zero, the world record for electrons in semiconductor nanostructures.

  • Andrea Goldsmith

    Andrea Goldsmith

    Stephen Harris Professor in the School of Engineering, Emerita

    BioAndrea Goldsmith is the Dean of Engineering and Applied Science and the Arthur LeGrand Doty Professor of Electrical and Computer Engineering at Princeton University. She was previously the Stephen Harris Professor of Engineering and Professor of Electrical Engineering at Stanford University, where she is now Harris Professor Emerita. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and biomedical devices. She founded and served as Chief Technical Officer of Plume WiFi (formerly Accelera, Inc.) and of Quantenna (QTNA), Inc, and she serves on the Board of Directors for Intel (INTC), Medtronic (MDT), Crown Castle Inc (CCI), and the Marconi Society. She also serves on the Presidential Council of Advisors on Science and Technology (PCAST). Dr. Goldsmith is a member of the National Academy of Engineering, the Royal Academy of Engineering, and the American Academy of Arts and Sciences. She is a Fellow of the IEEE and has received several awards for her work, including the Marconi Prize, the ACM Sigmobile Outstanding Contribution Award, the IEEE Sumner Technical Field Award, the ACM Athena Lecturer Award, the ComSoc Armstrong Technical Achievement Award, the Kirchmayer Graduate Teaching Award, the WICE Mentoring Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications,” “Principles of Cognitive Radio,” and “Machine Learning and Wireless Communications,” all published by Cambridge University Press, as well as an inventor on 29 patents. She received the B.S., M.S. and Ph.D. degrees in Electrical Engineering from U.C. Berkeley.

    Dr. Goldsmith is the founding Chair of the IEEE Board of Directors Committee on Diversity and Inclusion. She served as President of the IEEE Information Theory Society in 2009, as founding Chair of its Student Committee, and as founding Editor-in-Chief of the IEEE Journal on Selected Areas in Information Theory. She has also served on the Board of Governors for both the IEEE Information Theory and Communications Societies. At Stanford she served as Chair of Stanford’s Faculty Senate and for multiple terms as a Senator, and on its Academic Council Advisory Board, Budget Group, Committee on Research, Planning and Policy Board, Commissions on Graduate and on Undergraduate Education, Faculty Women’s Forum Steering Committee, and Task Force on Women and Leadership.

  • Judith L. Goldstein

    Judith L. Goldstein

    Janet M. Peck Professor of International Communication, Professor of Political Science and Senior Fellow at the Stanford Institute for Economic Policy Research

    BioJudith L. Goldstein is the Janet M. Peck Professor of International Communication and the Kaye University Fellow in Undergraduate Education. Her research focuses on international political economy, with a focus on trade politics. She has written and/or edited six book including Ideas, Interests and American Trade Policy and more recently The Evolution of the Trade Regime: Politics, Law and Economics of the GATT and the WTO. Her articles have appeared in numerous journals.

    Her current research focuses on the political requisites for trade liberalization focusing both on tariff bargaining and public preferences. As well, she is engaged in the analysis of a large survey panel, which focuses on how economic hard times influences public opinion.

    Goldstein has a BA from the University of California Berkeley, a Masters degree from Columbia University and a Ph.D. from UCLA.

  • Mary Kane Goldstein

    Mary Kane Goldstein

    Professor of Health Policy, Emerita

    Current Research and Scholarly InterestsHealth services research in primary care and geriatrics: developing, implementing, and evaluating methods for clinical quality improvement. Current work includes applying health information technology to quality improvement through clinical decision support (CDS) integrated with electronic health records; encoding clinical knowledge into computable formats in automated knowledge bases; natural language processing of free text in electronic health records; analyzing multiple comorbidities

  • Andrea Goldstein-Piekarski

    Andrea Goldstein-Piekarski

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    BioDr. Goldstein-Piekarski directs the Computational Psychiatry, Neuroscience, and Sleep Laboratory (CoPsyN Sleep Lab) as an Assistant Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine and PI within the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Palo Alto VA. She received her PhD in 2014 at the University of California, Berkeley where she studied the consequences of sleep on emotional brain function. She then completed a Postdoctoral fellowship at Stanford focusing on understanding the brain basis of anxiety and depression.

    As the director of the CoPsyN Sleep Lab she is developing a translational, interdisciplinary research program that combines human neuroimaging, high-density EEG sleep recording, and computational modeling to understand the neural mechanisms through which sleep disruption contributes to affective disorders, particularly depression, across the lifespan. The ultimate goals of this research are to (1) develop mechanistically-informed interventions that directly target aspects of sleep and brain function to prevent and treat affective disorders and (2) identify novel biomarkers which can identify which individuals are most likely to experience improved mood following targeted sleep interventions.

    This work is currently supported by The KLS Foundation, a R01 from National Institute of Mental Health, and a R61 from the National Institute of Mental Health.

  • Natalia Gomez-Ospina

    Natalia Gomez-Ospina

    Assistant Professor of Pediatrics (Genetics) and of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.

    1) Lysosomal storage diseases:
    Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease


    2) Point of care ammonia testing
    She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.

    3) Gene discovery
    Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.


    For more information go to our website:

    https://www.gomezospina.com/

  • Alexander Gonzalez

    Alexander Gonzalez

    Scientific Project Manager

    Current Role at StanfordScientific Project Manager for the Wu Tsai Human Performance Alliance

  • Benjamin Good

    Benjamin Good

    Assistant Professor of Applied Physics

    BioBenjamin Good is a theoretical biophysicist with a background in experimental evolution and population genetics. He is interested in the short-term evolutionary dynamics that emerge in rapidly evolving microbial populations like the gut microbiome. Technological advances are revolutionizing our ability to peer into these evolving ecosystems, providing us with an increasingly detailed catalog of their component species, genes, and pathways. Yet a vast gap still remains in understanding the population-level processes that control their emergent structure and function. Our group uses tools from statistical physics, population genetics, and computational biology to understand how microscopic growth processes and genome dynamics at the single cell level give rise to the collective behaviors that can be observed at the population level. Projects range from basic theoretical investigations of non-equilibrium processes in microbial evolution and ecology, to the development of new computational tools for measuring these processes in situ in both natural and experimental microbial communities. Through these specific examples, we seek to uncover unifying theoretical principles that could help us understand, forecast, and eventually control the ecological and evolutionary dynamics that take place in these diverse scenarios.

  • Miriam B. Goodman

    Miriam B. Goodman

    Mrs. George A. Winzer Professor of Cell Biology

    Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and temperature in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We also collaborate with Pruitt's group in Mechanical Engineering to develop and fabricate novel devices for the study of sensory transduction.

  • Stuart Goodman, MD, PhD

    Stuart Goodman, MD, PhD

    The Robert L. and Mary Ellenburg Professor of Surgery and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsAs an academic orthopaedic surgeon, my interests center on adult reconstructive surgery, arthritis surgery, joint replacement, biomaterials, biocompatibility, tissue engineering, mesenchymal stem cells. Collaborative clinical, applied and basic research studies are ongoing.

  • Kenneth Goodson

    Kenneth Goodson

    Senior Associate Dean for Faculty and Academic Affairs, Davies Family Provostial Professor, and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • William Rowland Goodyer, MD/PhD

    William Rowland Goodyer, MD/PhD

    Assistant Professor of Pediatrics (Cardiology)

    BioDr. Goodyer is a physician scientist who specializes in Pediatric Cardiology and Electrophysiology. Will graduated from McGill University (Montreal, Canada) with a BSc in Biology prior to completing his graduate studies at Stanford University in the Medical Scientist Training Program (MSTP). He subsequently completed residency training in Pediatrics at Boston Children’s Hospital before returning to Stanford to complete a fellowship in Pediatric Cardiology and advanced fellowship in Pediatric Electrophysiology. He additionally performed a postdoctoral fellowship in the Sean Wu laboratory at the Stanford Cardiovascular Institute where he developed the first comprehensive single-cell gene atlas of the entire murine cardiac conduction system (CCS) as well as pioneered the generation of optical imaging agents for the real-time visualization of the CCS to help prevent accidental surgical damage during heart surgeries. Will's lab (www.goodyerlab.com) focuses on basic science advances aimed at the improved diagnosis and treatment of cardiac arrhythmias.

  • Deborah M Gordon

    Deborah M Gordon

    Professor of Biology

    Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.

  • Jorg Goronzy

    Jorg Goronzy

    Professor of Medicine (Immunology and Rheumatology), Emeritus

    Current Research and Scholarly InterestsT cell homeostasis and function with age

  • Ian Gotlib

    Ian Gotlib

    David Starr Jordan Professor

    Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.

  • Or Gozani

    Or Gozani

    Dr. Morris Herzstein Professor

    Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.

  • Edward Graves

    Edward Graves

    Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsApplications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.

  • Nathanael S. Gray

    Nathanael S. Gray

    Krishnan-Shah Family Professor

    BioNathanael Gray is the Krishnan-Shah Family Professor of Chemical and Systems Biology at Stanford, Co-Director of Cancer Drug Discovery Co-Leader of the Cancer Therapeutics Research Program, Member of Chem-H, and Program Leader for Small Molecule Drug Discovery for the Innovative Medicines Accelerator (IMA). His research utilizes the tools of synthetic chemistry, protein biochemistry, and cancer biology to discover and validate new strategies for the inhibition of anti-cancer targets. Dr. Gray’s research has had broad impact in the areas of kinase inhibitor design and in circumventing drug resistance.
    Dr. Gray received his PhD in organic chemistry from the University of California at Berkeley in 1999 after receiving his BS degree with the highest honor award from the same institution in 1995. After completing his PhD, Dr. Gray was recruited to the newly established Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, California. During his six year stay at GNF, Dr. Gray became the director of biological chemistry where he supervised a group of over fifty researchers integrating chemical, biological and pharmacological approaches towards the development of new experimental drugs. Some of the notable accomplishments of Dr. Gray’s team at GNF include: discovery of the first allosteric inhibitors of wild-type and mutant forms of BCR-ABL which resulted in clinical development of ABL001; discovery of the first selective inhibitors of the Anaplastic Lymphoma Kinase (ALK), an achievement that led to the development of now FDA-approved drugs such as ceritinib (LDK378) for the treatment of EML4-ALK expressing non-small cell lung cancer (NSCLC); and discovery that sphingosine-1-phosphate receptor-1 (S1P1) is the pharmacologically relevant target of the immunosuppressant drug Fingomilod (FTY720) followed by the development of Siponimod (BAF312), which is currently used for the treatment of multiple sclerosis.
    In 2006, Dr. Gray returned to academia as a faculty member at the Dana Farber Cancer Institute and Harvard Medical School in Boston. There, he has established a discovery chemistry group that focuses on developing first-in-class inhibitors for newly emerging biological targets, including resistant alleles of existing targets, as well as inhibitors of well-validated targets, such as Her3 and RAS, that have previously been considered recalcitrant to small molecule drug development. Dr. Gray’s team developed covalent inhibitors of the T790M mutant of EGFR inspired the development of Osimertinib (AZD9291), now FDA approved for treatment of patients with relapsed lung cancer due to resistance to first generation EGFR inhibitors. Dr. Gray has also developed structure-based, generalized approaches for designing drugs to overcome one of the most common mechanisms of resistance observed against most kinase inhibitor drugs, mutation of the so-called "gatekeeper" residue, which has been observed in resistance to drugs targeting BCR-ABL, c-KIT and PDGFR.
    In 2021, Dr. Gray joined Stanford University where he has joined the Stanford Cancer Institute, Chem-H and the Innovative Medicines Accelerator (IMA) to spur the development of prototype drugs.
    These contributions have been recognized through numerous awards including the National Science Foundation’s Career award in 2007, the Damon Runyon Foundation Innovator award in 2008, the American Association for Cancer Research for Team Science in 2010 and for Outstanding Achievement in 2011 and the American Chemical Society award for Biological Chemistry in 2011, and the Nancy Lurie Marks endowed professorship in 2015 and the Paul Marks Prize in 2019, and the Hope Funds for Cancer Research in 2023.

  • Henry T. (Hank) Greely

    Henry T. (Hank) Greely

    Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics

    Current Research and Scholarly InterestsSince 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.

  • Sherril L. Green, DVM, PhD

    Sherril L. Green, DVM, PhD

    Professor of Comparative Medicine, Emerita

    Current Research and Scholarly InterestsResearch Interests: Xenopus laevis. Husbandry, biology, infectious and parasitic diseases of laboratory Xenopus laevis. Large animal models of disease.

  • Tamar Green

    Tamar Green

    Assistant Professor of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Sciences)

    Current Research and Scholarly InterestsThe Brain Imaging, Development, and Genetic (BRIDGE) Lab focuses on disorders associated with child development, such as attention deficits, hyperactivity, and autism spectrum disorders. we aim to uncover biological principles of how genetic variation and its associated downstream pathways affect children's neurodevelopmental disorders.

  • Harry B Greenberg

    Harry B Greenberg

    Joseph D. Grant Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsMolecular mechanisms of pathogenesis; determinants of protective immunity; host range and tissue tropism in liver and GI tract pathogenic viruses and studies of vaccines in people.

  • Peter Greenberg

    Peter Greenberg

    Professor of Medicine (Hematology), Emeritus

    Current Research and Scholarly InterestsDr Greenberg's clinical research involves design and coordination of clinical trials using experimental drugs with biologic focus for both lower and higher risk MDS patients not responding to standard therapies. These studies are particularly based on his prior laboratory investigations of gene expression and hematopoietic regulation in MDS patients. He is Coordinator of the International Working Group for Prognosis in MDS (IWG-PM) which generated the revised MDS classification system (the IPSS-R) and the mutation-based prognostic risk system, the IPSS-Molecular (IPSS-M). This project uses such findings to more specifically characterize and treat MDS patients. He is Chair of the NCCN Practice Guidelines Panel for MDS.

  • William Greenleaf

    William Greenleaf

    Professor of Genetics

    Current Research and Scholarly InterestsOur lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.

  • Michael Greicius, MD, MPH

    Michael Greicius, MD, MPH

    Iqbal Farrukh and Asad Jamal Professor and Professor, by courtesy, of Psychiatry and Behavioral Sciences (Administrative and Academic Special Programs)

    Current Research and Scholarly InterestsAs the Medical Director of the Stanford Center for Memory Disorders and Principal Investigator of the Stanford Extreme Phenotypes in Alzheimer's Disease (StEP AD) Cohort, Dr. Greicius' research focuses on elucidating the neurobiologic underpinnings of AD. His lab combines cutting edge brain imaging, "deep" phenotyping, and whole-genome sequencing of human subjects to identify novel pathways involved in AD pathogenesis. The goal of his work is to develop effective treatment for AD patients.

  • Kalanit Grill-Spector

    Kalanit Grill-Spector

    Susan S. and William H. Hindle Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsFor humans, recognition is a natural, effortless skill that occurs within a few hundreds of milliseconds, yet it is one of the least understood aspects of visual perception. Our research utilizes functional imaging (fMRI),diffusion weighted imaging (DWI), computational techniques, and behavioral methods to investigate the neural mechanisms underlying visual recognition in humans. We also examine the development of these mechanisms from childhood to adulthood as well as between populations.

  • Nicolas Grillet, PhD

    Nicolas Grillet, PhD

    Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsWe are interested in identifying the genes leading to Hearing and Vestibular impairments, and understanding their function at the molecular level.
    We have a special focus on how the Hair Cells are able to detect mechanical stimulation.

  • Eric R. Gross

    Eric R. Gross

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsA part of the laboratory studies organ injury and how common genetic variants may affect the response to injury caused by surgery; particularly aldehydes. Aldehyde accumulation can cause many post-operative complications that people experience during surgery- whether it be reperfusion injury, post-operative pain, cognitive dysfunction, or nausea. The other part of the lab studies the impact of e-cigarettes and alcohol, when coupled with genetics, on the cardiopulmonary system.

  • James Gross

    James Gross

    Ernest R. Hilgard Professor, Professor of Psychology and, by courtesy, of Philosophy

    Current Research and Scholarly InterestsI am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.

  • David Grusky

    David Grusky

    Edward Ames Edmonds Professor of Economics and Senior Fellow at the Stanford Institute for Economic Policy Research

    BioDavid B. Grusky is Barbara Kimball Browning Professor in the School of Humanities and Sciences, Director of the Stanford Center on Poverty and Inequality, and coeditor of Pathways Magazine. His research addresses the changing structure of late-industrial inequality and addresses such topics as (a) the role of rent-seeking and market failure in explaining the takeoff in income inequality, (b) the amount of economic and social mobility in the U.S. and other high-inequality countries (with a particular focus on the “Great Gatsby” hypothesis that opportunities for social mobility are declining), (c) the role of essentialism in explaining the persistence of extreme gender inequality, (d) the forces behind recent changes in the amount of face-to-face and online cross-class contact, and (e) the putative decline of big social classes. He is also involved in projects to improve the country’s infrastructure for monitoring poverty, inequality, and mobility by exploiting administrative and other forms of “big data” more aggressively. His recent books include Social Stratification (2014), Occupy the Future (2013), The New Gilded Age (2012), The Great Recession (2011), The Inequality Reader (2011), and The Inequality Puzzle (2010).

  • Anna Grzymala-Busse

    Anna Grzymala-Busse

    Michelle and Kevin Douglas Professor of International Studies and Senior Fellow at the Freeman Spogli Institute for International Studies and, by courtesy, at the Hoover Institution

    BioAnna Grzymala-Busse is the Michelle and Kevin Douglas Professor of International Studies in the Department of Political Science, the Director of the Europe Center, and Senior Fellow at the Freeman Spogli Institute. Her research focuses on the historical development of the state and its transformation, political parties, religion and politics, and post-communist politics. Other areas of interest include populism, informal institutions, and causal mechanisms.

    She is the author of three books: Redeeming the Communist Past: The Regeneration of Communist Successor Parties; Rebuilding Leviathan: Party Competition and State Development in Post-Communist Europe; Nations Under God: How Churches Use Moral Authority to Influence Politics and Sacred Foundations: the Religious and Medieval Roots of the European State. She is also a recipient of the Carnegie and Guggenheim Fellowships.

  • Wei Gu

    Wei Gu

    Assistant Professor of Pathology

    BioWei Gu, MD, PhD, is a physician, engineer, and scientist whose research focus is methylation classification within the area of molecular pathology. He has pioneered technologies in cell-free DNA 'liquid biopsy' testing, CRISPR diagnostics, clinical metagenomic sequencing, non-invasive prenatal testing, and COVID diagnostics. Dr. Gu has received awards from the Burroughs Wellcome Career Award and the National Cancer Institute. As a physician, he is a board-certified molecular and clinical pathologist and maintains a clinical practice at Stanford Healthcare.