Institute for Computational and Mathematical Engineering (ICME)


Showing 1-59 of 59 Results

  • Juan Alonso

    Juan Alonso

    Vance D. and Arlene C. Coffman Professor

    BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.

  • Biondo Biondi

    Biondo Biondi

    Barney and Estelle Morris Professor

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    Teaching
    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering and Professor, by courtesy, of Computer Science and of Management Science and Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    Professor Boyd has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. He is a Fellow of the IEEE, SIAM, and INFORMS, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education, with citation: “For excellence in classroom teaching, textbook and monograph preparation, and undergraduate and graduate mentoring of students in the area of systems, control, and optimization.” In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology
    On Leave from 07/01/2019 To 12/31/2020

    Current Research and Scholarly InterestsMy genetics research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. We focus on novel methods development for complex disease genetics and risk prediction in multi-ethnic settings. I am also interested in clinical data science and development of new diagnostics.I am also interested in disruptive innovation for healthcare including modeling long-term risk shifts and novel payment models.

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair in Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • Gunnar Carlsson

    Gunnar Carlsson

    Ann and Bill Swindells Professor, Emeritus

    BioDr. Carlsson has been a professor of mathematics at Stanford University since 1991. In the last ten years, he has been involved in adapting topological techniques to data analysis, under NSF funding and as the lead PI on the DARPA “Topological Data Analysis” project from 2005 to 2010. He is the lead organizer of the ATMCS conferences, and serves as an editor of several Mathematics journals

  • Eric Darve

    Eric Darve

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Darve's research is focused on the development of numerical methods for high-performance scientific computing, numerical linear algebra, fast algorithms, parallel computing, and machine learning with applications in engineering.

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.

  • Ron Fedkiw

    Ron Fedkiw

    Professor of Computer Science

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Margot Gerritsen

    Margot Gerritsen

    Senior Associate Dean for Educational Affairs, Professor of Energy Resources Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Civil and Environmental Engineering

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    Teaching
    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Kay Giesecke

    Kay Giesecke

    Professor of Management Science and Engineering

    Current Research and Scholarly InterestsKay is a financial engineer. He develops stochastic financial models, designs statistical methods for analyzing financial data, examines simulation and other numerical algorithms for solving the associated computational problems, and performs empirical analyses. Much of Kay's work is driven by important applications in areas such as credit risk management, investment management, and, most recently, housing finance.

  • Peter Glynn

    Peter Glynn

    Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance

  • Ashish Goel

    Ashish Goel

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.

  • Leonidas Guibas

    Leonidas Guibas

    Paul Pigott Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsGeometric and topological data analysis and machine learning. Algorithms for the joint analysis of collections of images, 3D models, or trajectories. 3D reconstruction.

  • Pat Hanrahan

    Pat Hanrahan

    Canon USA Professor in the School of Engineering and Professor of Electrical Engineering

    BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.

  • Kari Hanson

    Kari Hanson

    Adjunct Lecturer

    BioKari is a former technology executive with a passion for entrepreneurship, innovation, business strategy and making the world a better place. Having worked as a coach, investor, advisor, board member and CFO, she enjoys empowering students and entrepreneurs to thrive in life, the classroom and the marketplace.

    Kari is currently designing and co-teaching the ICME Analytics Accelerator, a project based research course for graduate students from multiple disciplines.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Trevor Hastie

    Trevor Hastie

    John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences

    Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.

  • Gianluca Iaccarino

    Gianluca Iaccarino

    Professor of Mechanical Engineering and Director, Institute for Computational and Mathematical Engineering

    Current Research and Scholarly InterestsComputing and data for energy, health and engineering

    Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
    My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.

    Multidisciplinary Teaching

    I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results.

  • Doug James

    Doug James

    Professor of Computer Science and, by courtesy, of Music

    Current Research and Scholarly InterestsComputer graphics & animation, physics-based sound synthesis, computational physics, haptics, reduced-order modeling

  • Antony Jameson

    Antony Jameson

    Professor (Research) of Aeronautics and Astronautics, Emeritus

    BioProfessor Jameson's research focuses on the numerical solution of partial differential equations with applications to subsonic, transonic, and supersonic flow past complex configurations, as well as aerodynamic shape optimization.

  • Ramesh Johari

    Ramesh Johari

    Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering and of Computer Science

    BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).

  • Peter K. Kitanidis

    Peter K. Kitanidis

    Professor of Civil and Environmental Engineering

    BioKitanidis develops methods for the solution of interpolation and inverse problems utilizing observations and mathematical models of flow and transport. He studies dilution and mixing of soluble substances in heterogeneous geologic formations, issues of scale in mass transport in heterogeneous porous media, and techniques to speed up the decay of pollutants in situ. He also develops methods for hydrologic forecasting and the optimization of sampling and control strategies.

  • Sanjiva Lele

    Sanjiva Lele

    Professor of Aeronautics and Astronautics and of Mechanical Engineering

    BioProfessor Lele's research combines numerical simulations with modeling to study fundamental unsteady flow phemonema, turbulence, flow instabilities, and flow-generated sound. Recent projects include shock-turbulent boundary layer interactions, supersonic jet noise, wind turbine aeroacoustics, wind farm modeling, aircraft contrails, multi-material mixing and multi-phase flows involving cavitation. He is also interested in developing high-fidelity computational methods for engineering applications.

  • Adrian Lew

    Adrian Lew

    Associate Professor of Mechanical Engineering

    BioProf. Lew's interests lie in the broad area of computational solid mechanics. He is concerned with the fundamental design and mathematical analysis of material models and numerical algorithms.

    Currently the group is focused on the design of algorithms to simulate hydraulic fracturing. To this end we work on algorithms for time-integration embedded or immersed boundary methods.

  • Ali Mani

    Ali Mani

    Associate Professor of Mechanical Engineering

    BioOur research is broadly defined by multiphysics problems in fluid dynamics and transport engineering. Our work contributes to the understanding of these problems primarily through theoretical tools such as techniques of applied mathematics as well as massively-parallel simulations. Numerical simulations enable quantitative visualization of the detailed physical processes which can be difficult to detect experimentally. They also provide quantitative data that guide the development of reduced-order models, which would naturally induce insight for design, optimization and control. Most of our work involves complementary interactions with experimental groups within and outside of Stanford. Specific current research topics include:

    (1) Electro-convection and microscale chaos near electrochemical interfaces

    (2) Particle-laden flows with applications in solar receivers

    (3) Applications of superhydrophobic surfaces for drag reduction of turbulent flows

    (4) Micro-bubble generation by breaking waves

    (5) Electrokinetics of micropores and nanopores

  • Alison Marsden

    Alison Marsden

    Associate Professor of Pediatrics (Cardiology) and of Bioengineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • Parviz Moin

    Parviz Moin

    Franklin P. and Caroline M. Johnson Professor in the School of Engineering

    BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics. He was the founding director of the Institute for Computational and Mathematical Engineering at Stanford.

    Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: interaction of turbulent flows and shock waves, aerodynamic noise, hypersonic flows, propulsion, computational science, flow control, large eddy simulation. He is a co- Editor of the Annual Review of Fluid Mechanics and Associate Editor of Journal of Computational Physics, and on the editorial board of Physical Review Fluids.

  • Walter Murray

    Walter Murray

    Professor (Research) of Management Science and Engineering, Emeritus

    BioProfessor Murray's research interests include numerical optimization, numerical linear algebra, sparse matrix methods, optimization software and applications of optimization. He has authored two books (Practical Optimization and Optimization and Numerical Linear Algebra) and over eighty papers. In addition to his University work he has extensive consulting experience with industry, government, and commerce.

  • Brad Osgood

    Brad Osgood

    Professor of Electrical Engineering and, by courtesy, of Education

    BioOsgood is a mathematician by training and applies techniques from analysis and geometry to various engineering problems. He is interested in problems in imaging, pattern recognition, and signal processing.

  • Arogyaswami Paulraj

    Arogyaswami Paulraj

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Emeritus Arogyaswami Paulraj, Stanford University, is a pioneer of MIMO wireless communications, a technology break through that enables improved wireless performance. MIMO is now incorporated into all new wireless systems.

    Paulraj is the author of over 400 research papers, two text books and a co-inventor in 79 US patents.

    Paulraj has won over a dozen awards, notably the National Inventors Hall of Fame (USPTO), Marconi Prize and Fellowship, 2014 and the IEEE Alexander Graham Bell Medal, 2011. He is a fellow of eight scientific / engineering national academies including the US, China, India and Sweden. He is a fellow of IEEE and AAAS.

    In 1999, Paulraj founded Iospan Wireless Inc. - which developed and established MIMO-OFDMA wireless as the core 4G technology. Iospan was acquired in by Intel Corporation in 2003. In 2004, he co-founded Beceem Communications Inc. The company became the market leader in 4G-WiMAX semiconductor and was acquired by Broadcom Corp. in 2010. In 2014 he founded Rasa Networks to develop Machine Learning tools for WiFi Networks. The company was acquired HPE in 2016.

    During his 30 years in the Indian (Navy) (1961-1991), he founded three national level laboratories in India and headed one of India’s most successful military R&D projects – APSOH sonar. He received over a dozen awards (many at the national level) in India including the Padma Bhushan, Ati Vishist Seva Medal and the VASVIK Medal.

  • Marco Pavone

    Marco Pavone

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering and of Computer Science

    BioDr. Marco Pavone is an Assistant Professor of Aeronautics and Astronautics at Stanford University, where he is the Director of the Autonomous Systems Laboratory and Co-Director of the Center for Automotive Research at Stanford. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of several awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an ONR Young Investigator Award, an NSF CAREER Award, and a NASA Early Career Faculty Award. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at the International Conference on Intelligent Transportation Systems, at the Field and Service Robotics Conference, at the Robotics: Science and Systems Conference, and at NASA symposia.

  • Peter Pinsky

    Peter Pinsky

    Professor of Mechanical Engineering, Emeritus

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Amin Saberi

    Amin Saberi

    Professor of Management Science and Engineering

    BioAmin Saberi is an Associate Professor and 3COM faculty scholar in Stanford University. He received his B.Sc. from Sharif University of Technology and his Ph.D. from Georgia Institute of Technology in Computer Science. His research interests include algorithms, approximation algorithms, and algorithmic aspects of games, markets, and networks. Amin Saberi's research is supported by National Science Foundation (under grants CCF 0546889, 0729586, and 0915145), Library of Congress, Stanford Clean Slate Design for the Internet, and Google. His most recent awards include an Alfred Sloan Fellowship and best paper awards in FOCS 2011 and SODA 2010.

  • Andreas Santucci

    Andreas Santucci

    Lecturer

    Current Research and Scholarly InterestsI am interested in the intersection of Causal Inference and Machine Learning.

  • Michael Saunders

    Michael Saunders

    Professor (Research) of Management Science and Engineering, Emeritus

    BioSaunders develops mathematical methods for solving large-scale constrained optimization problems and large systems of equations. He also implements such methods as general-purpose software to allow their use in many areas of engineering, science, and business. He is co-developer of the large-scale optimizers MINOS, SNOPT, SQOPT, PDCO, the dense QP and NLP solvers LSSOL, QPOPT, NPSOL, and the linear equation solvers SYMMLQ, MINRES, MINRES-QLP, LSQR, LSMR, LSLQ, LNLQ, LSRN, LUSOL.

  • Eric S.G. Shaqfeh

    Eric S.G. Shaqfeh

    Lester Levi Carter Professor of Chemical Engineering and Professor of Mechanical Engineering

    Current Research and Scholarly InterestsI have over 25 years experience in theoretical and computational research related to complex fluids following my PhD in 1986. This includes work in suspension mechanics of rigid partlcles (rods), solution mechanics of polymers and most recently suspensions of vesicles, capsules and mixtures of these with rigid particles. My research group is internationally known for pioneering work in all these areas.

  • Aaron Sidford

    Aaron Sidford

    Assistant Professor of Management Science and Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsMy research interests lie broadly in the optimization, the theory of computation, and the design and analysis of algorithms. I am particularly interested in work at the intersection of continuous optimization, graph theory, numerical linear algebra, and data structures.

  • Andrew Spakowitz

    Andrew Spakowitz

    Associate Professor of Chemical Engineering and of Materials Science and Engineering and, by courtesy, of Applied Physics and of Chemistry

    Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioBefore joining Stanford in January 2014, I held a position as Lecturer in Applied Mathematics and as a Ziff Environmental Fellow at Harvard. I hold a PhD in Geophysics from MIT and a Master in Public Administration from the Harvard Kennedy School. Prior to joining graduate school, I worked as a scientific consultant for different international organizations aiming to reduce the impact of natural and environmental disasters in vulnerable communities. The goal of my research is to advance our basic understanding and predictive capabilities of complex multi-phase flows that are fundamental to Earth science. I pursue this goal by developing original computational methods customized for the problem at hand. The phenomena I explore range from the microscopic to the planetary scale and space a wide variety of geophysics systems such as volcanoes, glaciers, and magma oceans. I have taught both undergraduate and graduate courses in scientific, planetary evolution, and natural disasters. Since arriving at Stanford in January 2014, I have co-taught GES 118, Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions

  • Hamdi Tchelepi

    Hamdi Tchelepi

    Professor of Energy Resources Engineering

    Current Research and Scholarly InterestsCurrent research activities include: (1) modeling unstable miscible and immiscible flows in heterogeneous formations, (2) developing multiscale formulations and scalable linear/nonlinear solution algorithms for multiphase flow in large-scale subsurface systems, and (3) developing stochastic approaches for quantifying the uncertainty associated with predictions of subsurface flow performance.

  • Johan Ugander

    Johan Ugander

    Assistant Professor of Management Science and Engineering

    BioUgander's research develops algorithmic and statistical frameworks for analyzing social networks, social systems, and other large-scale data-rich contexts. He is particularly interested in the challenges of causal inference and experimentation in these complex domains. His work commonly falls at the intersections of graph theory, statistics, optimization, and algorithm design.

  • Benjamin Van Roy

    Benjamin Van Roy

    Professor of Electrical Engineering, of Management Science and Engineering

    BioBenjamin Van Roy is a Professor at Stanford University, where he has served on the faculty since 1998. His research focuses on understanding how an agent interacting with a poorly understood environment can learn over time to make effective decisions. He is interested in the design of efficient reinforcement learning algorithms, understanding what is possible or impossible in this domain, and applying the technology toward the benefit of society. Beyond academia, he leads a DeepMind Research team in Mountain View, and has also led research programs at Unica (acquired by IBM), Enuvis (acquired by SiRF), and Morgan Stanley.

    He is a Fellow of INFORMS and IEEE and has served on the editorial boards of Machine Learning, Mathematics of Operations Research, for which he co-edits the Learning Theory Area, Operations Research, for which he edited the Financial Engineering Area, and the INFORMS Journal on Optimization.

    He received the SB in Computer Science and Engineering and the SM and PhD in Electrical Engineering and Computer Science, all from MIT. He has been a recipient of the MIT George C. Newton Undergraduate Laboratory Project Award, the MIT Morris J. Levin Memorial Master's Thesis Award, the MIT George M. Sprowls Doctoral Dissertation Award, the National Science Foundation CAREER Award, the Stanford Tau Beta Pi Award for Excellence in Undergraduate Teaching, and the Management Science and Engineering Department's Graduate Teaching Award. He has held visiting positions as the Wolfgang and Helga Gaul Visiting Professor at the University of Karlsruhe, the Chin Sophonpanich Foundation Professor and the InTouch Professor at Chulalongkorn University, a Visiting Professor at the National University of Singapore, and a Visiting Professor at the Chinese University of Hong Kong, Shenzhen.

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor in Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.

  • Yinyu Ye

    Yinyu Ye

    Kwoh-Ting Li Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    BioYinyu Ye is currently the Kwoh-Ting Li Professor in the School of Engineering at the Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering and the Director of the MS&E Industrial Affiliates Program, Stanford University. He received the B.S. degree in System Engineering from the Huazhong University of Science and Technology, China, and the M.S. and Ph.D. degrees in Engineering-Economic Systems and Operations Research from Stanford University. Ye's research interests lie in the areas of optimization, complexity theory, algorithm design and analysis, and applications of mathematical programming, operations research and system engineering. He is also interested in developing optimization software for various real-world applications. Current research topics include Liner Programming Algorithms, Markov Decision Processes, Computational Game/Market Equilibrium, Metric Distance Geometry, Dynamic Resource Allocation, and Stochastic and Robust Decision Making, etc. He is an INFORMS (The Institute for Operations Research and The Management Science) Fellow, and has received several research awards including the winner of the 2014 SIAG/Optimization Prize awarded every three years to the author(s) of the most outstanding paper, the inaugural 2012 ISMP Tseng Lectureship Prize for outstanding contribution to continuous optimization, the 2009 John von Neumann Theory Prize for fundamental sustained contributions to theory in Operations Research and the Management Sciences, the inaugural 2006 Farkas prize on Optimization, and the 2009 IBM Faculty Award. He has supervised numerous doctoral students at Stanford who received received the 2015 and 2013 Second Prize of INFORMS Nicholson Student Paper Competition, the 2013 INFORMS Computing Society Prize, the 2008 Nicholson Prize, and the 2006 and 2010 INFORMS Optimization Prizes for Young Researchers. Ye teaches courses on Optimization, Network and Integer Programming, Semidefinite Programming, etc. He has written extensively on Interior-Point Methods, Approximation Algorithms, Conic Optimization, and their applications; and served as a consultant or technical board member to a variety of industries, including MOSEK.