Independent Labs, Institutes, and Centers (Dean of Research)
Showing 1-86 of 86 Results
-
Marcel Fafchamps
Senior Fellow at the Freeman Spogli Institute for International Studies, Emeritus
Current Research and Scholarly InterestsSee my personal website for all my recent working papers.
-
Robert Michael Fairchild
Assistant Professor of Medicine (Immunology and Rheumatology)
Current Research and Scholarly InterestsDr. Fairchild’s research interests center on novel applications of ultrasonography in rheumatologic disease. Current active research endeavors include using ultrasound 1) to evaluate articular and soft tissue manifestations of systemic sclerosis, 2) to screen, detect and monitor of connective tissue disease associated interstitial lung disease, 3) and applying deep learning techniques to rheumatology ultrasound and imaging.
-
Antoine Falisse
Research Engineer, Wu Tsai Human Performance Alliance
BioDr. Falisse is a postdoctoral fellow in Bioengineering working on computational approaches to study human movement disorders. He primarily uses optimization methods, biomechanical modeling, and data from various sources (wearables, videos, medical images) to get insights into movement abnormalities and design innovative treatments and rehabilitation protocols.
Dr. Falisse received his PhD from KU Leuven (Belgium) where he worked on modeling and simulating the locomotion of children with cerebral palsy. His research was supported by the Research Foundation Flanders (FWO) through a personal fellowship. Dr. Falisse received several awards for his PhD work, including the David Winter Young Investigator Award, the Andrzej J. Komor Young Investigator Award, the VPHi Thesis Award in In Silico Medicine, and the KU Leuven Research Council Award in Biomedical Sciences. -
Ryann Fame, PhD
Assistant Professor of Neurosurgery
Current Research and Scholarly InterestsEarly neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies.
-
Alice C. Fan
Associate Professor of Medicine (Oncology) and, by courtesy, of Urology
Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.
-
Jonathan Fan
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.
-
Judith Ellen Fan
Assistant Professor of Psychology, by courtesy, of Education and of Computer Science
BioI direct the Cognitive Tools Lab (https://cogtoolslab.github.io/) at Stanford University. Our lab aims to reverse engineer the human cognitive toolkit — in particular, how people use physical representations of thought to learn, communicate, and solve problems. Towards this end, we use a combination of approaches from cognitive science, computational neuroscience, and artificial intelligence.
-
Shanhui Fan
Joseph and Hon Mai Goodman Professor of the School of Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Applied Physics
BioFan's research interests are in fundamental studies of nanophotonic structures, especially photonic crystals and meta-materials, and applications of these structures in energy and information technology applications
-
Rongxin Fang
Assistant Professor of Neurosurgery and, by courtesy, of Genetics
BioRongxin received his Ph.D. in Bioinformatics and Systems Biology at UC San Diego, where he was advised by Bing Ren (2015-2019). During this time, he developed high-throughput genomic technologies and computational tools to map the structure and activity of the mammalian genome at a large scale with single-cell resolution. He then applied these approaches to understand how cis-regulatory elements such as enhancers in the genome control gene expression and how this process can give rise to the distinct gene expression programs that underlie the cellular diversity in the mammalian brain. As an HHMI-Damon Runyon Postdoctoral Fellow in the laboratory of Xiaowei Zhuang at Harvard University (2019-2024), he developed and applied genome-scale and volumetric 3D transcriptome imaging methods to map the molecular and cellular architecture of the mammalian brain during evolution and aging. He also participated in the collaboration with Adam Cohen and Catherine Dulac to combine transcriptome imaging with functional neuronal recording to identify neuronal populations in the animal brain that underlie specific bran functions.
-
Kayvon Fatahalian
Associate Professor of Computer Science
BioKayvon Fatahalian is an Associate Professor in the Computer Science Department at Stanford University. Kayvon's research focuses on the design of systems for real-time graphics, high-efficiency simulation engines for applications in entertainment and AI, and platforms for the analysis of images and videos at scale.
-
C. Garrison Fathman
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.
-
Loredana Fattorini
Research Associate, Institute for Human-Centered Artificial Intelligence (HAI)
BioLoredana is a Research Associate at Stanford's Institute for Human-Centered Artificial Intelligence (HAI), where she is a member of the AI Index team. She is primarily involved in preparing the AI Index annual report and developing the Global AI Vibrancy tool. Using data analysis techniques, Loredana helps make complex information regarding the rapidly evolving AI landscape more accessible and understandable for policymakers, industry leaders, researchers, and the general public.
With a Ph.D. in Applied Economics from the IMT School for Advanced Studies Lucca, Italy, Loredana has conducted empirical research in the fields of Industrial Organization and International Trade. She also holds both Bachelor's and Master's degrees with honors in Economics from the University of Pisa and Scuola Superiore Sant'Anna, Italy.
Before joining HAI, Loredana worked as a Visiting Researcher at the Vienna Institute for International Economic Studies (WiiW). Her research focused on the competitiveness of firms in Europe, as part of a project funded by the Austrian National Bank. Additionally, she worked as a Data Analyst for a fast-growing eCommerce startup that managed online sales for Europe's largest food retail cooperative. -
Michael Fayer
David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry
BioMy research group studies complex molecular systems by using ultrafast multi-dimensional infrared and non-linear UV/Vis methods. A basic theme is to understand the role of mesoscopic structure on the properties of molecular systems. Many systems have structure on length scales large compare to molecules but small compared to macroscopic dimensions. The mesoscopic structures occur on distance scales of a few nanometers to a few tens of nanometers. The properties of systems, such as water in nanoscopic environments, room temperature ionic liquids, functionalized surfaces, liquid crystals, metal organic frameworks, water and other liquids in nanoporous silica, polyelectrolyte fuel cell membranes, vesicles, and micelles depend on molecular level dynamics and intermolecular interactions. Our ultrafast measurements provide direct observables for understanding the relationships among dynamics, structure, and intermolecular interactions.
Bulk properties are frequently a very poor guide to understanding the molecular level details that determine the nature of a chemical process and its dynamics. Because molecules are small, molecular motions are inherently very fast. Recent advances in methodology developed in our labs make it possible for us to observe important processes as they occur. These measurements act like stop-action photography. To focus on a particular aspect of a time evolving system, we employ sequences of ultrashort pulses of light as the basis for non-linear methods such as ultrafast infrared two dimensional vibrational echoes, optical Kerr effect methods, and ultrafast IR transient absorption experiments.
We are using ultrafast 2D IR vibrational echo spectroscopy and other multi-dimensional IR methods, which we have pioneered, to study dynamics of molecular complexes, water confined on nm lengths scales with a variety of topographies, molecules bound to surfaces, ionic liquids, and materials such as metal organic frameworks and porous silica. We can probe the dynamic structures these systems. The methods are somewhat akin to multidimensional NMR, but they probe molecular structural evolution in real time on the relevant fast time scales, eight to ten orders of magnitude faster than NMR. We are obtaining direct information on how nanoscopic confinement of water changes its properties, a topic of great importance in chemistry, biology, geology, and materials. For the first time, we are observing the motions of molecular bound to surfaces. In biological membranes, we are using the vibrational echo methods to study dynamics and the relationship among dynamics, structure, and function. We are also developing and applying theory to these problems frequently in collaboration with top theoreticians.
We are studying dynamics in complex liquids, in particular room temperature ionic liquids, liquid crystals, supercooled liquids, as well as in influence of small quantities of water on liquid dynamics. Using ultrafast optical heterodyne detected optical Kerr effect methods, we can follow processes from tens of femtoseconds to ten microseconds. Our ability to look over such a wide range of time scales is unprecedented. The change in molecular dynamics when a system undergoes a phase change is of fundamental and practical importance. We are developing detailed theory as the companion to the experiments.
We are studying photo-induced proton transfer in nanoscopic water environments such as polyelectrolyte fuel cell membranes, using ultrafast UV/Vis fluorescence and multidimensional IR measurements to understand the proton transfer and other processes and how they are influenced by nanoscopic confinement. We want to understand the role of the solvent and the systems topology on proton transfer dynamics. -
James Fearon
Theodore and Frances Geballe Professor in the School of Humanities and Sciences, Senior Fellow at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Economics
Current Research and Scholarly Interestspolitical violence
-
Ron Fedkiw
Canon Professor in the School of Engineering
BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.
-
Adrian Lake Scheider Feinberg
Undergraduate, Art & Art History
Undergraduate, Freeman Spogli Institute for International Studies
Undergraduate, History
Undergraduate, Program in International RelationsBioI am a fourth-year undergraduate double-majoring in International Relations and Art History (Film) with interdisciplinary honors in Democracy, Development, and the Rule of Law. Broadly speaking, my coursework focuses on postwar Southeast European legal history, post-conflict governance, and political theory.
Talk to me in Mandarin, Persian, German, French, or Serbo-Croatian. -
Jeffrey A. Feinstein, MD, MPH
Dunlevie Family Professor of Pulmonary Vascular Disease and Professor, by courtesy, of Bioengineering
Current Research and Scholarly InterestsResearch interests include (1) computer simulation and modeling of cardiovascular physiology with specific attention paid to congenital heart disease and its treatment, (2) the evaluation and treatment of pulmonary hypertension/pulmonary vascular diseases, and (3) development and testing of medical devices/therapies for the treatment of congenital heart disease and pulmonary vascular diseases.
-
Heidi M. Feldman
Ballinger-Swindells Endowed Professor of Developmental and Behavioral Pediatrics
On Partial Leave from 03/01/2025 To 05/04/2025Current Research and Scholarly InterestsMy current research program focuses on infants born preterm, before 32 weeks gestation from two language environments: English and Spanish. The study considers how neurobiological factors, specifically properties of the white matter circuits in the brain, interact with social, psychological, and economic factors to predict language processing efficiency at 18 months of age.
-
Jessica Feldman
Associate Professor of Biology
Current Research and Scholarly InterestsCell differentiation requires cells to polarize, translating developmental information into cell-type specific arrangements of intracellular structures. The major goal of the research in my laboratory is to understand how cells build these functional intracellular patterns during development, specifically focusing on the molecules and mechanisms that build microtubules at cell-type specific locations and the polarity cues that guide this patterning in epithelial cells.
-
Marcus Feldman
Burnet C. and Mildred Finley Wohlford Professor
Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China
-
Dean W. Felsher
Professor of Medicine (Oncology) and of Pathology
Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.
-
Stephen Felt, DVM, MPH
Professor of Comparative Medicine
Current Research and Scholarly InterestsHis research interests include infectious diseases, particularly zoonoses, and exploring techniques which promote the health and welfare of laboratory animals.
-
Scott Fendorf
Terry Huffington Professor, Senior Associate Dean for Integrative Initiatives, Senior Fellow at the Woods Institute for the Environment and Professor of Photon Science
Current Research and Scholarly InterestsSoil and environmental biogeochemistry
-
Dapeng Feng
Postdoctoral Scholar, Earth System Science
BioDapeng Feng is a postdoctoral fellow in the Department of Earth System Science and Stanford Institute for Human-Centered Artificial Intelligence. During his PhD he developed the differentiable hydrologic modeling framework to unify machine learning and physical models for large-scale water cycle simulations and streamflow forecasting. His current research interests focus on systematically integrating AI, physical models, and big earth observations for large-scale geoscientific modeling and knowledge discovery, particularly in characterizing the terrestrial water cycle and its interactions with plant and climate systems.
-
Liang Feng
Associate Professor of Molecular and Cellular Physiology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsWe are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.
-
Russell D. Fernald
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)
-
Daniel Fernandez
Director of Crystallography
BioBiological molecules like proteins and nucleic acids do what they do upon their specific three-dimensional arrangement of atoms. We use crystals to reveal those atoms under the light of X-rays.
-
Juan Carlos Fernandez-Miranda
Professor of Neurosurgery and, by courtesy, of Otolaryngology - Head & Neck Surgery (OHNS)
BioDr. Juan Fernandez-Miranda is Professor of Neurosurgery and Surgical Director of the Stanford Brain Tumor, Skull Base, and Pituitary Centers. He is internationally renowned for his expertise in minimally invasive brain surgery, endoscopic skull base and pituitary surgery, open skull base surgery, and complex brain tumor surgery. He has performed nearly 3,000 cranial operations including over 1,500 endoscopic endonasal operations for pituitary tumors and other skull base lesions. He is highly regarded for his innovative contributions to the development and refinement of endoscopic endonasal skull base surgery, for his ability to select the most effective and less invasive approach to each individual patient, and for his precise knowledge of the intricate anatomy of the white matter tracts required to maximize resection and minimize morbidity on high and low grade glioma patients. He has been recently ranked by Expertscape as World-Expert (top 0.05%) on Skull Base Surgery and #1 Neurosurgeon Expert on Skull Base Tumors (pituitary adenomas, meningiomas, craniopharyngiomas, chordomas, chondrosarcomas, schwannomas and esthesioneuroblastomas) on the US Pacific Region. He is co-founder and vice-president of the International Rhoton Society and executive member of the Board of Directors of the The Neurosurgical Atlas, the largest nonprofit organization for neurosurgical education and research in the world.
Dr. Fernandez-Miranda completed neurosurgery residency at La Paz University Hospital in Madrid, Spain. Upon completion of his residency, he was awarded the Sanitas Prize to the best medical postgraduate trainee in the country. From 2005 to 2007, he underwent fellowship training in microsurgical neuroanatomy at the University of Florida under legendary neurosurgeon Albert L. Rhoton, Jr. From 2007 to 2010 he continued subspecialty clinical training in cerebrovascular surgery at the University of Virginia, and endoscopic endonasal and open skull base surgery at University of Pittsburgh Medical Center (UPMC). During his 10-year tenure at UPMC, he pioneered endoscopic endonasal approaches to highly complex pituitary and skull base tumors, developed a world-class complex brain surgery program, and led a premier training and research program on surgical neuroanatomy and skull base surgery.
In 2018, he was recruited to bring to Stanford his unique technical expertise and to collaborate with world-renowned Stanford colleagues across multiple disciplines, leading the establishment of one of the most preeminent centers worldwide for comprehensive treatment of complex lesions in the brain, skull base, and pituitary regions. His top priority is to provide gentle, accurate, and safe surgery, in a team-based and compassionate approach to patient care. -
Katherine Ferrara
Professor of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Thomas Fingar
Lecturer
Current Research and Scholarly InterestsChinese domestic and foreign policy, US-China relations, US foreign policy, intelligence analysis, mega-trends and global challenges, geopolitical consequences of climate change
-
Chelsea Finn
Assistant Professor of Computer Science and of Electrical Engineering
BioChelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected data, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Presidential Early Career Award for Scientists and Engineers, and the MIT Technology Review 35 under 35 list, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.
-
David Fiorentino, MD, PhD
Professor of Dermatology
Current Research and Scholarly InterestsFrom a clinical standpoint, I am particularly focused in the care of patients with myositis or systemic sclerosis. We offer clinical trials, including novel, cutting-edge cellular-based (e.g. chimeric antigen receptor, or, CAR T) therapies for these diseases. We are particularly interested in understanding the role of auto antigens in providing windows into disease pathogenesis, as well as their potential direct role of autoantibodies in causing disease.
-
Andrew Fire
George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWhile chromosomal inheritance provides cells with one means for keeping and transmitting genetic information, numerous other mechanisms have (and remain to be) discovered. We study novel cellular mechanisms that enforce genetic constancy and permit genetic change. Underlying our studies are questions of the diversity of inheritance mechanisms, how cells distinguish such mechanisms as "wanted" versus "unwanted", and of the consequences and applications of such mechanisms in health and disease.
-
Michael Fischbach
Liu (Liao) Family Professor
Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.
1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.
2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:
Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?
Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?
3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing. -
Daniel Fisher
Marjorie Mhoon Fair Professor
Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer
-
Ian Fisher
Humanities and Sciences Professor, Professor of Applied Physics and, by courtesy, of Materials Science and Engineering
Current Research and Scholarly InterestsOur research focuses on the study of quantum materials with unconventional magnetic & electronic ground states & phase transitions. Emphasis on design and discovery of new materials. Recent focus on use of strain as a probe of, and tuning parameter for, a variety of electronic states. Interests include unconventional superconductivity, quantum phase transitions, nematicity, multipolar order, instabilities of low-dimensional materials and quantum magnetism.
-
Paul Graham Fisher, MD
Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health
On Partial Leave from 07/15/2024 To 07/13/2025Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.
-
Philip Andrew Fisher
Diana Chen Professor of Early Childhood Learning and Professor, by courtesy, of Pediatrics
BioDr. Philip Fisher is the Diana Chen Professor of Early Childhood Learning in the Graduate School of Education at Stanford. His research, which has been continuously funded by the National Institutes of Health since 1999, focuses on developing and evaluating scalable early childhood interventions in communities, and on translating scientific knowledge regarding healthy development under conditions of adversity for use in social policy and programs. He is particularly interested in the effects of early stressful experiences on children's neurobiological and psychological development, and in prevention and treatment programs for improving children's functioning in areas such as relationships with caregivers and peers, social-emotional development, and academic achievement. He is currently the lead investigator in the ongoing RAPID-EC project, a national survey on the well-being of households with young children during the COVID-19 pandemic. Dr. Fisher is also interested in the brain's plasticity in the context of therapeutic interventions. He is the developer of a number of widely implemented evidence-based interventions for supporting healthy child development in the context of social and economic adversity, including Treatment Foster Care Oregon for Preschoolers (TFCO-P), Kids in Transition to School (KITS), and Filming Interactions to Nurture Development (FIND). He has published over 200 scientific papers in peer reviewed journals. He is the recipient of the 2012 Society for Prevention Research Translational Science Award, and a 2019 Fellow of the American Psychological Society.
-
Robert Fisher, MD, PhD
The Maslah Saul, MD, Professor and Professor, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.
-
James Fishkin
Janet M. Peck Professor of International Communication, Senior Fellow at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Political Science
BioJames S. Fishkin holds the Janet M. Peck Chair in International Communication at Stanford University where he is Professor of Communication, Professor of Political Science (by courtesy) and Director of the Deliberative Democracy Lab.
He received his B.A. from Yale in 1970 and holds a Ph.D. in Political Science from Yale as well as a second Ph.D. in Philosophy from Cambridge.
He is the author of Democracy When the People Are Thinking (Oxford 2018), When the People Speak (Oxford 2009), Deliberation Day (Yale 2004 with Bruce Ackerman) and Democracy and Deliberation (Yale 1991).
He is best known for developing Deliberative Polling® – a practice of public consultation that employs random samples of the citizenry to explore how opinions would change if they were more informed. His work on deliberative democracy has stimulated more than 100 Deliberative Polls in 28 countries around the world. It has been used to help governments and policy makers make important decisions in Texas, China, Mongolia, Japan, Macau, South Korea, Bulgaria, Brazil, Uganda and other countries around the world.
He is a Fellow of the American Academy of Arts and Sciences, a Guggenheim Fellow, a Fellow of the Center for Advanced Study in the Behavioral Sciences at Stanford, and a Visiting Fellow Commoner at Trinity College, Cambridge. -
Matthew Fitzgerald, PhD
Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsMy research encompasses several translational projects. One focus is to modify the routine audiologic test battery such that it places equal weight on hearing acuity and hearing function. This work includes measures of speech in noise, or electrophysiologic responses such as the FFR. I also explore tools to better assess and maximize performance in users of hearing aids and cochlear implants. Finally, I am also investigating the benefits of telemedicine, and new treatments for tinnitus.
-
Dominik Fleischmann
Professor of Radiology (Cardiovascular Imaging)
Current Research and Scholarly InterestsNon-invasive Cardiovascular Imaging
Image Post-processing
Contrast Medium Dynamics -
Marc Fleischmann
Project & Knowledge Management, Sarafan ChEM-H
Current Role at StanfordProject and Knowledge Management
-
Pamela Flood
Adjunct Clinical Professor, Anesthesiology, Perioperative and Pain Medicine
BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.
-
Sean Follmer
Associate Professor of Mechanical Engineering and, by courtesy, of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design
-
Sai Folmsbee, MD, PhD
Clinical Assistant Professor, Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsMy current research interest is the intersection of psychiatry and neuroimmunology. I am currently collaborating with Stanford Neuroimmunology in a retrospective analysis of patient data to determine the relationship between psychaitric medications and clinical outcomes in hospitalized patients with mutliple sclerosis, autoimmune encephalitis, and neuromyelitis optica.
-
James Ford
Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics
On Partial Leave from 01/01/2025 To 01/01/2026Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNAdamage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.
-
Polly Fordyce
Associate Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.
-
Vasiliki Fouka
Bing Professor of Human Biology, Associate Professor of Political Science and Senior Fellow at the Stanford Institute for Economic Policy Research
On Leave from 04/01/2025 To 06/30/2025BioVasiliki Fouka is an Associate Professor of Political Science, a Senior Fellow at the Stanford Institute for Economic Policy Research (SIEPR) and a Faculty Research Fellow at the National Bureau of Economic Research (NBER).
Her research interests lie at the intersection of political economy and political behavior. She uses historical and contemporary data to understand what shapes social identities in the short and long run and the implications of that for political and economic behavior and policy design. Major applications of her research include immigrant assimilation, the determinants of prejudice against ethnic and racial minorities, and intergroup conflict.
Her articles have been published in leading journals in political science and economics, including the American Political Science Review, the Annual Review of Political Science and the Review of Economic Studies. -
Michael B. Fowler, MBBS, FRCP
Professor of Medicine (Cardiovascular), Emeritus
Current Research and Scholarly InterestsAdrenergic nervous system; beta-adrenergic function in, heart failure; drugs in heart failure.
-
Emily Fox
Professor of Statistics and of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.
Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities. -
Paige Fox, MD, PhD, FACS
Associate Professor of Surgery (Plastic and Reconstructive Surgery)
BioDr. Paige Fox is Board Certified Plastic Surgeon who specializes in hand surgery, reconstructive microsurgery including facial reanimation, as well as peripheral nerve and brachial plexus surgery. She is an Associate Professor in the Division of Plastic and Reconstructive surgery in the Department of Surgery. She works with adult and pediatric patients. Her lab focuses on wound healing and nerve compression. She has clinical research interested in optimizing care of upper extremity and nerve disorders both in the US and internationally. Dr. Fox has a passion for sustainability and health care's effect on the environment. She is involved in efforts to green the OR and the clinics at Stanford.
-
Christopher Francis
Professor of Earth System Science, of Oceans and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsMicrobial cycling of carbon, nitrogen, and metals in the environment; molecular geomicrobiology; marine microbiology; microbial diversity; meta-omics
-
Curtis Frank
W. M. Keck, Sr. Professor in Engineering, Emeritus
BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.
A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued. -
Michael Frank
Benjamin Scott Crocker Professor of Human Biology and Professor, by courtesy, of Linguistics
On Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHow do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.
-
Hunter Fraser
Professor of Biology
Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.
Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. -
Michael Fredericson, MD
Professor of Orthopaedic Surgery and, by courtesy, of Medicine (Stanford Prevention Research Center)
Current Research and Scholarly InterestsMy research focuses on the etiology, prevention, and treatment of overuse sports injuries in athletes and lifestyle medicine practices for improved health and longevity.
-
Michael T. Freehill, MD, FAOA
Associate Professor of Orthopaedic Surgery
BioDr. Freehill is a board-certified, double fellowship-trained specialist in orthopaedic surgery with a sub-specialty certification in sports medicine. His concentration is in shoulder and elbow. Dr. Freehill is a team physician for the Stanford University athletics program and head physician for the Stanford University baseball team. Dr. Freehill also teaches in the Department of Orthopaedic Surgery at Stanford University School of Medicine.
Dr. Freehill’s practice focuses on all shoulder conditions. He treats rotator cuff tears, shoulder instability, shoulder arthritis, sports shoulder, arthropathy, complex shoulder pathology, and sports related shoulder injury. In addition, he is also passionate about sports- related elbow injuries, with an emphasis on thrower’s elbow.
Professional and amateur athletes, as well as non-athletes, come to Dr. Freehill for expert care. His sports medicine training and specialization in shoulder replacement procedures enable him to treat patients across the lifespan. Depending on factors including the patient’s condition and occupation, he may recommend treatment ranging from non-operative solutions (such as physical therapy) to cutting-edge biologics procedures or complex surgery.
In addition to his positions within the Stanford University athletics program, Dr. Freehill serves as assistant team physician for the Oakland A’s. Previously, he was a team physician for the Detroit Tigers and the Winston-Salem Dash (affiliated with the Chicago White Sox); he assisted with the Baltimore Orioles. He has also served as Director of Sports Medicine for Wake Forest University Athletics.
As executive director of the Stanford Baseball Science CORE, Dr. Freehill draws on his previous experience as a professional baseball player to help athletes of all skill levels. In the lab, he conducts cutting edge research on the biomechanics of overhead throwers in order to support advances in throwing performance. He has conducted a study on pitch counts in adolescent players funded by Major League Baseball. Dr. Freehill was also awarded a research grant from the National Institutes of Health to investigate stromal vascular fractionated mesenchymal cells and their potential for healing rotator cuff tendon tears.
Dr. Freehill has pioneered the use of some of the latest techniques and technology for leading-edge care. Among the advanced technologies he utilizes is a virtual reality (VR) system that enables him to perform a simulated shoulder arthroplasty procedure prior to entering the operating room with a patient. The system also enables him to predict and order customized implants if needed, which is believed to enable a more positive outcome for patients.
Peer-reviewed articles authored by Dr. Freehill explore rotator cuff injuries, shoulder arthroplasty, baseball-related injuries and performance interests, and more. His work has been featured in the American Journal of Sports Medicine, the Orthopedic Journal of Sports Medicine, Journal of Shoulder and Elbow Surgery, Arthroscopy, and elsewhere. He has written numerous book chapters and made over 200 presentations at conferences around the world.
Dr. Freehill’s honors include an Orthopaedic Residency Research Award while at Johns Hopkins University. He is also a Neer Award winner, denoting the highest research award selected annually by the American Shoulder and Elbow Society.
Currently, he serves on the Medical Publishing Board of Trustees for the American Orthopaedic Society for Sports Medicine. He is a member of the American Orthopaedic Association, and the Major League Baseball Team Physician Association. He is a committee member for the American Shoulder and Elbow Surgeons Society, International Congress of Arthroscopy and Sports Traumatology, the Arthroscopy Association of North America, and the American Academy of Orthopaedic Surgeons. -
Shai Friedland
Professor of Medicine (Gastroenterology and Hepatology)
Current Research and Scholarly Interests1. Gastrointestinal Endoscopy- Techniques and Outcomes
2. Noninvasive colorectal cancer screening
3. Medical device development in gastroenterology -
Anne L. Friedlander
Adjunct Professor
BioAnne L. Friedlander, Ph.D, is the Assistant Director of Stanford Lifestyle Medicine, an Adjunct Professor in the Program in Human Biology, and a member of the Wu Tsai Human Performance Alliance. She has served as the Director of the Exercise Physiology Lab, the Director of the Mobility Division within the Stanford Center on Longevity (SCL), and the Associate Director for Education within the Geriatric Research, Education and Clinical Center (GRECC) at the VA Palo Alto. Dr. Friedlander has broad research experience in the areas of enhancing human performance, environmental physiology, and using physical activity and mobility to promote healthy aging. She also consults regularly with companies interested in developing new products, programs and ideas in the fitness and wellness space. She is passionate about the benefits of movement on the aging process and specializes in giving talks translating scientific findings on physiology and exercise into practical applications for people.
-
Richard Frock
Assistant Professor of Radiation Oncology (Radiation and Cancer Biology)
Current Research and Scholarly InterestsWe are a functional genomics laboratory interested in elucidating mechanisms of DNA repair pathway choice and genome instability. We use genome-wide repair fate maps of targeted DNA double strand breaks (DSBs) to develop pathway-specific models and combinatorial therapies. Our expertise overlaps many different fields including: genome editing, ionizing radiation, cancer therapeutics, V(D)J and IgH class switch recombination, repair during transcription and replication, and meiosis.
-
Victor Froelicher, MD
Professor of Medicine (Cardiovascular) at the Veterans Affairs Palo Alto Health Care System, Emeritus
Current Research and Scholarly InterestsScreening of athletes for sudden cardiac death, Computerized ECG and clinical data management; exercise Physiology including expired gas analysis; the effect of chronic and acute exercise on the heart; digital recording of biological signals; diagnostic use of exercise testing; development of Expert Medical System software and educational tools.
-
Wolf B. Frommer
Member, Bio-X
Current Research and Scholarly InterestsWatching cells at work
Focus: Transport / signaling across the plasma membrane (sugars, amino acids).
Tools: FRET-based nanosensors for metabolite imaging (with subcellular resolution) in living organisms using confocal fluorescence microscopy and HTS; Sensor optimization by computational design; RNAi to modify cellular functions.
Goals: Identify unknown sugar effluxers from liver/plant cells; study regulatory networks.
Model systems: liver, neuronal, plant cell cultures, Arabidopsis, yeast -
Alan R. Fry
Senior Scientist, SLAC National Accelerator Laboratory
Current Role at StanfordSenior Staff Scientist, SLAC
Project Director, MEC Petawatt Upgrade Project
Program Director, LCLS Summer Internships -
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Takako Fujioka
Associate Professor of Music
BioResearch topics include neural oscillations for auditory perception, auditory-motor coupling, brain plasticity in development and aging, and recovery from stroke with music-supported therapy.
Her post-doctoral and research-associate work at Rotman Research Institute in Toronto was supported by awards from the Canadian Institutes of Health Research. Her research continues to explore the biological nature of human musical ability by examining brain activities with non-invasive human neurophysiological measures such as magnetoencephalography (MEG) and electroencephalography (EEG). -
Francis Fukuyama
Olivier & Nomellini Senior Fellow in International Studies at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Political Science
Current Research and Scholarly InterestsDeveloping nations; governance; international political economy; nation-building and democratization; strategic and security issues
-
Gerald Fuller
Fletcher Jones Professor in the School of Engineering
BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.
There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films. -
Margaret T. Fuller
Reed-Hodgson Professor of Human Biology, Katharine Dexter McCormick and Stanley McCormick Memorial Professor and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly InterestsRegulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.
-
Lawrence Fung MD PhD
Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)
On Partial Leave from 02/16/2025 To 06/15/2025Current Research and Scholarly InterestsDr. Lawrence Fung is a physician-scientist specializing in autism and neurodiversity. Dr. Fung is an associate professor of Psychiatry at Stanford University. He is the director of the Stanford Neurodiversity Project (SNP), director of the Neurodiversity Clinic, and PI at the Fung Lab. Dr. Fung’s research traverses from multi-modal neuroimaging studies to a new conceptualization of neurodiversity and its application to clinical, educational, and employment settings. His lab has two main arms of research: (1) neurobiology of autism and (2) neurodiversity.
The neurobiology arm of his lab focuses on advancing the understanding of the thalamocortical circuits and their socio-communicative and cognitive functions in people on the spectrum by using novel neuroimaging and bioanalytical technologies. The findings of his neurobiology research efforts were published in top journals in our field, such as Molecular Psychiatry, Translational Psychiatry, and Psychoneuroendocrinology.
Using a community-based participatory research approach, Dr. Fung’s team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. He has developed and assessed several psychoeducational interventions, including the Developing Inclusive and Vocational Educational Resources for Success and Employment (DIVERSE) curriculum.
Dr. Fung is also the founding director of the SNP, a special initiative of the Department of Psychiatry at Stanford. Since 2017, the SNP has organized various events, including the Stanford Neurodiversity Summit, which brings thousands of people together yearly to share visions, innovations, and inspirations about maximizing the potential of neurodiversity. Each summer, about 100 high-school students join us at the SNP’s Research, Education, and Advocacy Camp for High Schoolers (SNP-REACH), to learn how to develop neurodiversity advocacy projects. Dr. Fung also teaches a neurodiversity design thinking course at Stanford. Clinically, Dr. Fung has applied the SBMN to his clinical work and is teaching a CME course focusing on delivering neurodiversity-affirmative care to neurodivergent patients. -
Ansgar Furst
Clinical Associate Professor (Affiliated), Psych/Public Mental Health & Population Sciences
Staff, Psych/Public Mental Health & Population SciencesBioDr. Furst is a Clinical Associate Professor (affiliated) of Psychiatry and Behavioral Sciences and of Neurology and Neurological Sciences at Stanford University School of Medicine. He is a Principal Investigator and Director of the California War Related Illness and Injury Study Center (WRIISC) Advanced Fellowship Post-Doctoral program and Associate Director of Neuroimaging. He is also a Senior Research Scientist at the Polytrauma System of Care (PSC) at VA Palo Alto Health Care System. Dr. Furst serves as Associate Editor for the journal Frontiers in Neurology and is a member of the editorial board of NEUROLOGY. His research focuses on chronic multisymptom illness, traumatic brain injury, sleep, pain and neurodegenerative diseases.
For more information please visit:
https://med.stanford.edu/furstlab.html
Member of:
Center for Sleep and Circadian Sciences
https://med.stanford.edu/cscs.html
Faculty Affiliate:
Wu Tsai Human Performance Alliance
https://humanperformance.stanford.edu