Precourt Institute for Energy


Showing 51-100 of 152 Results

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. His early work in the 1970's demonstrating a practical heterojunction bipolar transistor led to their application in every mobile phone today and record setting solar cell efficiency. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Siegfried Hecker

    Siegfried Hecker

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies, Emeritus

    Current Research and Scholarly Interestsplutonium science; nuclear weapons stockpile stewardship; cooperative threat reduction

  • Thomas Heller

    Thomas Heller

    Lewis Talbot and Nadine Hearn Shelton Professor of International Legal Studies, Emeritus

    BioAn expert in international law and legal institutions, Thomas C. Heller has focused his research on the rule of law, international climate control, global energy use, and the interaction of government and nongovernmental organizations in establishing legal structures in the developing world. He has created innovative courses on the role of law in transitional and developing economies, as well as the comparative study of law in developed economies. He has co-directed the law school’s Rule of Law Program, as well as the Stanford Program in International and Comparative Law. Professor Heller has been a visiting professor at the European University Institute, Catholic University of Louvain, and Hong Kong University, and has served as the deputy director of the Freeman Spogli Institute for International Studies at Stanford University, where he is now a senior fellow.

    Professor Heller is also a senior fellow (by courtesy) at the Woods Institute for the Environment. Before joining the Stanford Law School faculty in 1979, he was a professor of law at the University of Wisconsin Law School and an attorney-advisor to the governments of Chile and Colombia.

  • Roland Horne

    Roland Horne

    Director, Precourt Institute for Energy, Thomas Davies Barrow Professor and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsWell Testing, Optimisation and Geothermal Reservoir Engineering

  • Mark Horowitz

    Mark Horowitz

    Fortinet Founders Chair of the Department of Electrical Engineering , Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science

    BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, his research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.

    In the 2000s he started a long collaboration with Prof. Levoy on computational photography, which included work that led to the Lytro camera, whose photographs could be refocused after they were captured.. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.

  • Robert Huggins

    Robert Huggins

    Professor of Materials Science and Engineering, Emeritus

    BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.

    His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.

    Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.

    He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016.

  • Holmes Hummel, PhD

    Holmes Hummel, PhD

    Energy Equity & Just Transitions, Managing Director, Precourt Institute for Energy

    Current Role at StanfordEnergy Equity & Just Transitions, Managing Director
    Precourt Institute for Energy

    Resident Fellow, Explore Energy House

    Coordinating Council Member, Environmental Justice Working Group

    Advisory Member, Partnership in Climate Justice in the Bay


    Collaborator in Collaborative Learning about Equity and Rapid Decarbonization (CLEAR Decarbonization), one of the first projects selected for an award from the Stanford Sustainability Accelerator

  • Hillard Huntington

    Hillard Huntington

    Executive Director, Energy Modeling Forum
    Affiliate, Management Science and Engineering - Energy Modeling Forum

    BioHuntington is Executive Director of Stanford University's Energy Modeling Forum, where he conducts studies to improve the usefulness of models for understanding energy and environmental problems. In 2005 the Forum received the prestigious Adelman-Frankel Award from the International Association for Energy Economics for its "unique and innovative contribution to the field of energy economics."

    His current research interests are modeling energy security, energy price shocks, energy market impacts of environmental policies, and international natural gas and LNG markets. In 2002 he won the Best Paper Award from the Energy Journal for a paper co-authored with Professor Dermot Gately of New York University.

    He is a Senior Fellow and a past-President of the United States Association for Energy Economics and a member of the National Petroleum Council. He was also Vice-President for Publications for the International Association for Energy Economics and a member of the American Statistical Association's Committee on Energy Data. Previously, he served on a joint USA-Russian National Academy of Sciences Panel on energy conservation research and development.

    Huntington has testified before the U.S. Senate Committee on Foreign Relations and the California Energy Commission.

    Prior to coming to Stanford in 1980, he held positions in the corporate and government sectors with Data Resources Inc., the U.S. Federal Energy Administration, and the Public Utilities Authority in Monrovia, Liberia (as a U.S. Peace Corps Volunteer).

  • Gianluca Iaccarino

    Gianluca Iaccarino

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsComputing and data for energy, health and engineering

    Challenges in energy sciences, green technology, transportation, and in general, engineering design and prototyping are routinely tackled using numerical simulations and physical testing. Computations barely feasible two decades ago on the largest available supercomputers, have now become routine using turnkey commercial software running on a laptop. Demands on the analysis of new engineering systems are becoming more complex and multidisciplinary in nature, but exascale-ready computers are on the horizon. What will be the next frontier? Can we channel this enormous power into an increased ability to simulate and, ultimately, to predict, design and control? In my opinion two roadblocks loom ahead: the development of credible models for increasingly complex multi-disciplinary engineering applications and the design of algorithms and computational strategies to cope with real-world uncertainty.
    My research objective is to pursue concerted innovations in physical modeling, numerical analysis, data fusion, probabilistic methods, optimization and scientific computing to fundamentally change our present approach to engineering simulations relevant to broad areas of fluid mechanics, transport phenomena and energy systems. The key realization is that computational engineering has largely ignored natural variability, lack of knowledge and randomness, targeting an idealized deterministic world. Embracing stochastic scientific computing and data/algorithms fusion will enable us to minimize the impact of uncertainties by designing control and optimization strategies that are robust and adaptive. This goal can only be accomplished by developing innovative computational algorithms and new, physics-based models that explicitly represent the effect of limited knowledge on the quantity of interest.

    Multidisciplinary Teaching

    I consider the classical boundaries between disciplines outdated and counterproductive in seeking innovative solutions to real-world problems. The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system requires the analysis of their flow, thermal, and structural characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing in multiphysics settings. Virtual prototyping is a staple of modern engineering practice! I have designed a new undergraduate course as an introduction to Computational Engineering, covering theory and practice across multidisciplanary applications. The emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal/structural problems, the course develops the essential concepts of Verification and Validation for engineering simulations, providing the basis for assessing the accuracy of the results.

  • Rob Jackson

    Rob Jackson

    Michelle and Kevin Douglas Provostial Professor and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioRob Jackson and his lab examine the many ways people affect the Earth. They seek basic scientific knowledge and use it to help shape policies and reduce the environmental footprint of global warming, energy extraction, and other issues. They're currently examining the effects of climate change and droughts on forest mortality and grassland ecosystems. They are also working to measure and reduce greenhouse gas emissions through the Global Carbon Project (globalcarbonproject.org), which Jackson chairs; examples of new research Rob leads include establishing a global network of methane tower measurements at more than 80 sites worldwide and measuring and reducing methane emissions from oil and gas wells, city streets, and homes and buildings.

    As an author and photographer, Rob has published a trade book about the environment (The Earth Remains Forever, University of Texas Press), two books of children’s poems, Animal Mischief and Weekend Mischief (Highlights Magazine and Boyds Mills Press), and recent or forthcoming poems in the journals Southwest Review, Cortland Review, Cold Mountain Review, Atlanta Review, LitHub, and more. His photographs have appeared in many media outlets, including the NY Times, Washington Post, USA Today, US News and World Report, Science, Nature, and National Geographic News.

    Rob is a recent Guggenheim Fellow and sabbatical visitor in the Center for Advanced Study in the Behavioral Sciences. He is also a Fellow in the American Academy of Arts and Sciences, American Association for the Advancement of Science, American Geophysical Union, and Ecological Society of America. He received a Presidential Early Career Award in Science and Engineering from the National Science Foundation, awarded at the White House.

  • Mark Z. Jacobson

    Mark Z. Jacobson

    Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy

    BioMark Z. Jacobson’s career has focused on better understanding air pollution and global warming problems and developing large-scale clean, renewable energy solutions to them. Toward that end, he has developed and applied three-dimensional atmosphere-biosphere-ocean computer models and solvers to simulate air pollution, weather, climate, and renewable energy. He has also developed roadmaps to transition states and countries to 100% clean, renewable energy for all purposes and computer models to examine grid stability in the presence of high penetrations of renewable energy.

  • Thomas Jaramillo

    Thomas Jaramillo

    Professor of Chemical Engineering, of Energy Science Engineering, and of Photon Science

    BioRecent years have seen unprecedented motivation for the emergence of new energy technologies. Global dependence on fossil fuels, however, will persist until alternate technologies can compete economically. We must develop means to produce energy (or energy carriers) from renewable sources and then convert them to work as efficiently and cleanly as possible. Catalysis is energy conversion, and the Jaramillo laboratory focuses on fundamental catalytic processes occurring on solid-state surfaces in both the production and consumption of energy. Chemical-to-electrical and electrical-to-chemical energy conversion are at the core of the research. Nanoparticles, metals, alloys, sulfides, nitrides, carbides, phosphides, oxides, and biomimetic organo-metallic complexes comprise the toolkit of materials that can help change the energy landscape. Tailoring catalyst surfaces to fit the chemistry is our primary challenge.

  • Ramesh Johari

    Ramesh Johari

    Professor of Management Science and Engineering and, by courtesy, of Electrical Engineering and of Computer Science

    BioJohari is broadly interested in the design, economic analysis, and operation of online platforms, as well as statistical and machine learning techniques used by these platforms (such as search, recommendation, matching, and pricing algorithms).

  • Leigh Johnson

    Leigh Johnson

    Academic Research & Program Officer, Precourt Institute for Energy

    BioLeigh works closely with the faculty co-directors and staff to implement the institute’s vision and strategic direction. She manages a team who supports the energy research, education and outreach mission of the institute and Stanford broadly. The institute serves as the hub for over 200 faculty across the university who conduct energy research, students from Stanford’s seven schools, and staff from energy programs and centers across Stanford. Outreach activities engage stakeholders from industry, government and non-governmental organizations, academia and the Stanford alumni community in an energy ecosystem. Activities that serve this broad constituency include several annual conferences, topical workshops, student programs and the weekly Stanford Energy Seminar. The team covers energy news and information across the university through articles in Stanford Report, the institute's website, the monthly Stanford Energy News and social media.

    Leigh started at Stanford in 2003 as project development director for the Provost Committee for the Environment, and as the first employee she served as associate director of programs at the Stanford Woods Institute for the Environment where she worked for seven years on a wide-range of entrepreneurial and programmatic activities. Prior to joining Stanford, Leigh worked in public relations at Regis McKenna Inc. and sales at IBM. Non-profit commitments have included: president of the Las Lomitas Education Foundation, president of the Ragazzi Boys Chorus Board of Directors, and docent for Y2E2 building tours. Leigh holds an A.B. degree in mathematics from Dartmouth College.

  • Arpita Kalra

    Arpita Kalra

    Program Manager, Precourt Institute for Energy

    BioArpita Kalra is a program manager at the Precourt Institute for Energy. In this role she supports the Institute's outreach efforts and manages current and upcoming external engagement programs. Prior to Stanford, she worked in the advertising industry as a media planner and buyer where she developed and executed marketing campaigns across print, electronic and social media. Arpita holds a masters in Marketing Communications from the Mudra Institute of Communications, Ahmedabad (MICA) in India and a bachelors in Statistics from Delhi University.

  • Chi-Chang Kao

    Chi-Chang Kao

    Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioChi-Chang Kao works on the development of experimental methods exploiting the unique properties of high-brightness storage rings and X-ray Free Electron Lasers (XFEL), and their applications to materials science. Currently, he is working on using X-ray scattering in combination with high magnetic fields to study high-temperature superconductors, inelastic X-ray scattering study of materials using XFEL, and X-ray study of materials for energy applications.

    Kao served as the fifth director of the SLAC National Accelerator Laboratory from November 2012 to February 2023. Prior to that, he served at Brookhaven National Laboratory for nearly 25 years in a variety of positions, including five years as chairperson of the National Synchrotron Light Source (NSLS). He was elected a fellow of the American Physical Society in 2006 and was named a fellow of the American Association for the Advancement of Science in 2010 for his many contributions to resonant elastic and inelastic X-ray scattering techniques and their application to materials physics, as well as for his leadership at the NSLS.

  • Omer Karaduman

    Omer Karaduman

    Assistant Professor of Operations, Information and Technology at the Graduate School of Business and Center Fellow at the Stanford Institute for Economic Policy Research and at the Precourt Institute for Energy

    BioPrior to coming to Stanford, Omer completed his Ph.D. in Economics at MIT in 2020, and got his bachelor's degree in Economics from Bilkent University in 2014.

    His research focuses on the transition of the energy sector towards a decarbonized and sustainable future. In his research, he utilizes large datasets by using game-theoretical modeling to have practical policy suggestions.

  • Hemamala Karunadasa

    Hemamala Karunadasa

    Associate Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy

    BioProfessor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.

    Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.

    Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.

    Please visit the lab website for more details and recent news.

  • Leonid Kazovsky

    Leonid Kazovsky

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Kazovsky and his research group are investigating green energy-efficient networks. The focus of their research is on access and in-building networks and on hybrid optical / wireless networks. Prof. Kazovsky's research group is also conducting research on next-generation Internet architectures and novel zero-energy photonic components.

  • Jeffrey R. Koseff

    Jeffrey R. Koseff

    Director, Sustainability Science and Practice, William Alden Campbell and Martha Campbell Professor in the School of Engineering, Professor of Oceans and Senior Fellow at the Woods Institute for the Environment
    On Leave from 10/01/2023 To 03/31/2024

    BioJeff Koseff, founding co-director of the Stanford Woods Institute for the Environment, is an expert in the interdisciplinary domain of environmental fluid mechanics. His research falls in the interdisciplinary domain of environmental fluid mechanics and focuses on the interaction between physical and biological systems in natural aquatic environments. Current research activities are in the general area of environmental fluid mechanics and focus on: turbulence and internal wave dynamics in stratified flows, coral reef and sea-grass hydrodynamics, the role of natural systems in coastal protection, and flow through terrestrial and marine canopies. Most recently he has begun to focus on the interaction between gravity currents and breaking internal waves in the near-coastal environment, and the transport of marine microplastics. Koseff was formerly the Chair of Civil and Environmental Engineering, and the Senior Associate Dean of Engineering at Stanford, and has served on the Board of Governors of The Israel Institute of Technology, and has been a member of the Visiting Committees of the Civil and Environmental Engineering department at Carnegie-Mellon University, The Iowa Institute of Hydraulic Research, and Cornell University. He has also been a member of review committees for the College of Engineering at the University of Michigan, The WHOI-MIT Joint Program, and the University of Minnesota Institute on the Environment. He is a former member of the Independent Science Board of the Bay/Delta Authority. He was elected a Fellow of the American Physical Society in 2015, and received the Richard Lyman Award from Stanford University in the same year. In 2020 he was elected as a Fellow of the California Academy of Sciences. Koseff also serves as the Faculty Athletics Representative to the Pac-12 and NCAA for Stanford.

  • Anthony Kovscek

    Anthony Kovscek

    Keleen and Carlton Beal Professor of Petroleum Engineering and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsResearch
    Together with my research group, I develop and apply advanced imaging techniques, experimentation, and models to understand complex multiphase flows of gas, water, and organic phases in natural and manufactured porous media with applications in carbon storage, increased utilization of carbon dioxide for subsurface applications, hydrogen storage, and water reuse. In all of our work, physical observations, obtained mainly from laboratory and field measurements, are interwoven with theory.

    Teaching
    My teaching interests center broadly around education of students to meet the energy challenges that we will face this century. I teach undergraduate courses that examine the interplay of energy use and environmental issues including renewable energy resources and sustainability. At the graduate level, I offer classes on renewable energy processes based on heat and the thermodynamics of hydrocarbon mixtures.

    Professional Activities
    Member, American Geophysical Union, Society of Petroleum Engineers, and the American Chemical Society.

  • Sanjay Lall

    Sanjay Lall

    Professor of Electrical Engineering

    BioSanjay Lall is Professor of Electrical Engineering in the Information Systems Laboratory and Professor of Aeronautics and Astronautics at Stanford University. He received a B.A. degree in Mathematics with first-class honors in 1990 and a Ph.D. degree in Engineering in 1995, both from the University of Cambridge, England. His research group focuses on algorithms for control, optimization, and machine learning. Before joining Stanford he was a Research Fellow at the California Institute of Technology in the Department of Control and Dynamical Systems, and prior to that he was a NATO Research Fellow at Massachusetts Institute of Technology, in the Laboratory for Information and Decision Systems. He was also a visiting scholar at Lund Institute of Technology in the Department of Automatic Control. He has significant industrial experience applying advanced algorithms to problems including satellite systems, advanced audio systems, Formula 1 racing, the America's cup, cloud services monitoring, and integrated circuit diagnostic systems, in addition to several startup companies. Professor Lall has served as Associate Editor for the journal Automatica, on the steering and program committees of several international conferences, and as a reviewer for the National Science Foundation, DARPA, and the Air Force Office of Scientific Research. He is the author of over 130 peer-refereed publications.

  • Joyce Lee

    Joyce Lee

    Explore Energy Program Manager, Precourt Institute for Energy

    BioJoyce Lee is a program manager for the Explore Energy program at the Precourt Institute for Energy at Stanford University. In this role, she supports the Energy@Stanford & SLAC conference, the Stanford Energy Student Lectures, and works closely with the Explore Energy peer advisors to serve as a resource for students interested in and passionate about all things related to energy across the campus. Prior to joining Precourt, Lee was a research project manager at Stanford's Walter H. Shorenstein Asia-Pacific Research Center, where her research focused on policy analysis and development in Northeast Asia--especially regarding the two Koreas. Prior to Stanford, Lee held research and administration positions at the Asia Foundation's Center for U.S.-Korea Policy, the United States Congress, the Ministry of Foreign Affairs of the Republic of Korea, and the Hillary Clinton Presidential Campaign. Lee graduated from the University of Washington with a double bachelors degree in political science and psychology and received a master's degree in public policy from Cornell University.

  • Philip Levis

    Philip Levis

    Professor of Computer Science and of Electrical Engineering

    BioProfessor Levis' research focuses on the design and implementation of efficient software systems for embedded wireless sensor networks; embedded network sensor architecture and design; systems programming and software engineering.

  • Raymond Levitt

    Raymond Levitt

    Kumagai Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsDr. Levitt founded and directs Stanford’s Global Projects Center (GPC), which conducts research, education and outreach to enhance financing, governance and sustainability of global building and infrastructure projects. Dr. Levitt's research focuses on developing enhanced governance of infrastructure projects procured via Public-Private Partnerships (PPP) delivery, and alternative project delivery approaches for complex buildings like full-service hospitals or data centers.

  • Aaron Lindenberg

    Aaron Lindenberg

    Professor of Materials Science and Engineering and of Photon Science

    BioLindenberg's research is focused on visualizing the ultrafast dynamics and atomic-scale structure of materials on femtosecond and picosecond time-scales. X-ray and electron scattering and spectroscopic techniques are combined with ultrafast optical techniques to provide a new way of taking snapshots of materials in motion. Current research is focused on the dynamics of phase transitions, ultrafast properties of nanoscale materials, and charge transport, with a focus on materials for information storage technologies, energy-related materials, and nanoscale optoelectronic devices.

  • David Lobell

    David Lobell

    Benjamin M. Page Professor, William Wrigley Senior Fellow at the Freeman Spogli Institute, at the Woods Institute for the Environment and at the Stanford Institute for Economic Policy Research

    Current Research and Scholarly InterestsWe study the interactions between food production, food security, and the environment using a range of modern tools.

  • Amory B Lovins

    Amory B Lovins

    Adjunct Professor

    BioPhysicist Amory Lovins (1947– ) is Cofounder (1982) and Chairman Emeritus, and was Chief Scientist (2007–19), of RMI (Rocky Mountain Institute, www.rmi.org), with which he continues to collaborate. He has designed numerous superefficient buildings, vehicles, and industrial plants, and synthesized an "integrative design" method and practice that can make the energy efficiency resource severalfold larger, yet cheaper, often with increasing returns. Since 1973 he has also advised major firms and governments in >70 countries on advanced energy efficiency and strategy, emphasizing efficiency, renewables integration, and the links between energy, resources, environment, security, development, and economy. He is a Visiting Scholar of the Precourt Institute for Energy.

    Lovins has received the Blue Planet, Volvo, Zayed, Onassis, Nissan, Shingo, and Mitchell Prizes, MacArthur and Ashoka Fellowships, 12 honorary doctorates, the Heinz, Lindbergh, Right Livelihood, National Design, and World Technology Awards, many other energy and environment recognitions, and Germany’s highest civilian honor (the Officer’s Cross of the Order of Merit). A Harvard and Oxford dropout, former Oxford don, honorary US architect, Swedish engineering academician, and 2011–18 member of the US National Petroleum Council, he has taught at ten universities—most recently the US Naval Postgraduate School and Stanford (spring 2007 MAP/Ming Visiting Professor, half-time 2020–  Adjunct Professor of Civil and Environmental Engineering in his teaching terms)—teaching only subjects he hasn’t formally studied, so as to cultivate beginner’s mind. In 2009, Time named him one of the world’s 100 most influential people, and Foreign Policy, one of the 100 top global thinkers. His most recent books, mostly coauthored, include Natural Capitalism (1999), Small Is Profitable (2002), Winning the Oil Endgame (2004), The Essential Amory Lovins (2011), and Reinventing Fire (2011). His avocations include fine-art landscape photography (the profession of his wife Judy Hill Lovins, www.judyhill.com), music, writing, orangutans, great-ape language, linguistics, and Taoist thought.

    COURSES: Lovins and Dr. Joel Swisher PE, as CEE Adjunct Professors in teaching quarters, cotaught in 2023 iterations 9–10 of their flagship course applying whole-system thinking and integrative design for radical energy efficiency and profitable climate solutions: CEE 107R, CEE 207R: "E^3: Extreme Energy Efficiency." They will next offer it in Winter and Spring Quarters 2024.

    PUBLICATIONS

    Lovins has authored 31 books and over 880 papers in a wide range of disciplines. His recent peer-reviewed papers include:

    "How big is the energy efficiency resource?," Env. Res. Ltrs., Sep 2018, https://doi.org/10.1088/1748-9326/aad965
    "Recalibrating climate prospects," coauthored, Env. Res. Ltrs., Dec 2019, https://doi.org/10.1088/1748-9326/ab55ab
    "Can a virus and viral ideas speed the world's journey beyond fossil fuels?," with K. Bond, Env. Res. Ltrs., Feb 2021, https://doi.org/10.1088/1748-9326/abc3f2
    "Reframing automotive fuel efficiency," SAE J-STEEP, Apr 2020, https://doi.org/10.4271/13-01-01-0004

    His Aug/Sep 2020 Electricity Journal interview on the future of electricity is at https://doi.org/10.1016/j.tej.2020.106827.
    His 11 Nov 2020 Precourt Institute for Energy seminar on "Integrative Design for Radical Energy Efficiency," with Dr. Holmes Hummel, is at https://energy.stanford.edu/events/special-energy-seminar-amory-lovins-holmes-hummel.
    Profitably abating heavy transport and industrial heat: https://www.rmi.org/profitable-decarb/ and ($6.95 paywall) https://sloanreview.mit.edu/article/decarbonizing-our-toughest-sectors-profitably/, both 2021.
    “US nuclear power: status, prospects, and climate implications,” El. J., 6 May 2022, https://doi.org/10.1016/j.tej.2022.107122.

  • Julien Maire

    Julien Maire

    SUSTAINABLE FINANCE FELLOW (CLIMATE RISK), Precourt Institute for Energy

    BioJulien Maire is a Research Fellow at the Sustainable Finance Initiative (SFI) of the Precourt Institute for Energy at Stanford University, where he focuses on climate risk management. Specifically, he works on designing insurance markets to address increasing climate risk. Other research areas of interest include the role of banks in transition pathways and assessing the macroeconomic implications of climate transition.

    Julien received his master’s degree in economics from Ecole Polytechnique, ENSAE and HEC Paris and graduated from Ecole Normale Supérieure Paris-Saclay. He previously held research positions at the World Bank, the Peterson Institute for International Economics and was involved in various research projects with U.C. Berkeley and MIT Sloan.

  • Dr. Arun Majumdar

    Dr. Arun Majumdar

    Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Engineering, of Energy Science & Engineering, of Photon Science, by courtesy, of Materials Sci & Eng and Senior Fellow, by courtesy, at Hoover

    BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.

    In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.

    Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.

    After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.

    Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.

    Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.

    Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989.

  • Ali Mani

    Ali Mani

    Associate Professor of Mechanical Engineering

    BioAli Mani is an associate professor of Mechanical Engineering at Stanford University. He is a faculty affiliate of the Institute for Computational and Mathematical Engineering at Stanford. He received his PhD in Mechanical Engineering from Stanford in 2009. Prior to joining the faculty in 2011, he was an engineering research associate at Stanford and a senior postdoctoral associate at Massachusetts Institute of Technology in the Department of Chemical Engineering. His research group builds and utilizes large-scale high-fidelity numerical simulations, as well as methods of applied mathematics, to develop quantitative understanding of transport processes that involve strong coupling with fluid flow and commonly involve turbulence or chaos. His teaching includes the undergraduate engineering math classes and graduate courses on fluid mechanics and numerical analysis.

  • Gilbert Masters

    Gilbert Masters

    Professor (Teaching) of Civil and Environmental Engineering, Emeritus

    BioGILBERT M. MASTERS
    MAP EMERITUS PROFESSOR OF SUSTAINABLE ENERGY
    B.S. (1961) AND M.S. (1962) UNIVERSITY OF CALIFORNIA, LOS ANGELES
    PH.D. (1966) Electrical Engineering, STANFORD UNIVERSITY

    Gil Masters has focused on energy efficiency and renewable energy systems as essential keys to slowing global warming, enhancing energy security, and improving conditions in underserved, rural communities. Although officially retired in 2002, he has continued to teach CEE 176A: Energy-Efficient Buildings, and CEE 176B: Electric Power: Renewables and Efficiency. He is the author or co-author of ten books, including Introduction to Environmental Engineering and Science (3rd edition, 2008), Renewable and Efficient Electric Power Systems, (2nd edition, 2013), and Energy for Sustainability: Technology, Policy and Planning (2nd edition, 2018). Professor Masters has been the recipient of a number of teaching awards at Stanford, including the university's Gores Award for Excellence in Teaching, and the Tau Beta Pi teaching award from the School of Engineering. Over the years, more than 10,000 students have enrolled in his courses. He served as the School of Engineering Associate Dean for Student Affairs from 1982-1986, and he was the Interim Chair of the Department of Civil and Environmental Engineering in 1992-93.

  • Pamela Matson

    Pamela Matson

    Richard and Rhoda Goldman Professor of Environmental Studies and Senior Fellow at the Woods Institute, Emerita

    BioPAMELA MATSON is an interdisciplinary sustainability scientist, academic leader, and organizational strategist. She served as dean of Stanford University’s School of Earth, Energy and Environmental Sciences from 2002-2017, building interdisciplinary departments and educational programs focused on resources, environment and sustainability, as well as co-leading university-wide interdisciplinary initiatives. In her current role as the Goldman Professor of Environmental Studies and Senior Fellow in the Woods Institute for the Environment, she leads the graduate program on Sustainability Science and Practice. Her research addresses a range of environment and sustainability issues, including sustainability of agricultural systems, vulnerability and resilience of particular people and places to climate change, and characteristics of science that can contribute to sustainability transitions at scale.

    Dr. Matson serves as chair of the board of the World Wildlife Fund-US and as a board member of the World Wildlife Fund-International and several university advisory boards. She served on the US National Academy of Science Board on Sustainable Development and co-wrote the National Research Council’s volume Our Common Journey: A transition toward sustainability (1999); she also led the NRC committee on America’s Climate Choices: Advancing the Science of Climate Change. She was the founding chair of the National Academies Roundtable on Science and Technology for Sustainability, and founding editor for the Annual Review of Environment and Resources. She is a past President of the Ecological Society of America. Her recent publications (among around 200) include Seeds of Sustainability: Lessons from the Birthplace of the Green Revolution (2012) and Pursuing Sustainability (2016).

    Pam is an elected member of the National Academy of Science and the American Academy of Arts and Sciences, and is a AAAS Fellow. She received a MacArthur Foundation Award, contributed to the award of the Nobel Prize to the Intergovernmental Panel on Climate Change, among other awards and recognitions, and is an Einstein Fellow of the Chinese Academy of Sciences.

    Dr. Matson holds a Bachelor of Science degree with double majors in Biology and Literature from the University of Wisconsin (Eau Claire), a Master degree in Environmental Science and Policy from Indiana University’s School of Public and Environmental Affairs, a Doctorate in Forest Ecology from Oregon State University, and honorary doctorates from Princeton, McGill and Arizona State Universities. She spent ten years as a research scientist with NASA-Ames Research Center before moving to a professorship at the University of California Berkeley and, in 1997, to Stanford University.

  • Meagan Mauter

    Meagan Mauter

    Associate Professor of Photon Science, Senior Fellow at the Woods Institute for the Environment and at the Precourt Institute for Energy and Associate Professor, by courtesy, of Chemical Engineering

    BioProfessor Meagan Mauter is appointed as an Associate Professor of Civil & Environmental Engineering and as a Center Fellow, by courtesy, in the Woods Institute for the Environment. She directs the Water and Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world through innovation in water treatment technology, optimization of water management practices, and redesign of water policies. Ongoing research efforts include: 1) developing automated, precise, robust, intensified, modular, and electrified (A-PRIME) water desalination technologies to support a circular water economy, 2) identifying synergies and addressing barriers to coordinated operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.

    Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Energy-Water Desalination Hub addressing water security issues in the United States. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for desalinating non-traditional source waters.

    Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University, a Masters of Environmental Engineering from Rice University, and a PhD in Chemical and Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs and the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government and as an Associate Professor of Engineering & Public Policy, Civil & Environmental Engineering, and Chemical Engineering at Carnegie Mellon University.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Jennifer Milne

    Jennifer Milne

    Associate Director for Advanced Research Projects, Precourt Institute for Energy

    BioJennifer is a scientist with more than a decade's experience in identifying research needs in energy and shaping the energy research agenda at Stanford. She joined the Global Climate and Energy Project in 2007, as an energy analyst, where she led the bioenergy area of the portfolio. She now leads the Advanced Research Projects at the Precourt Institute for Energy, working with the Director of Precourt and other stakeholders to foster energy research at Stanford. In 2023, Jennifer joined the technology team of the Sustainability Accelerator, helping to identify solutions for real-world impact across broad sustainability challenges.

    Jennifer is a technical resource for energy related and carbon removal projects across the University and advisor in the bioenergy area. Prior to joining Global Climate and Energy Project in 2007, she was a post-doctoral scholar at the Carnegie Institution for Science, Department of Plant Biology, at Stanford University, working on plant cell wall polysaccharides and biomass related projects. She holds a Ph.D. in Biology from the University of York, U.K. and a Bachelor of Science in Biochemistry (First Class Honors) from the University of Stirling, U.K.

  • Liang Min

    Liang Min

    Managing Director for the Bits and Watts Initiative, Precourt Institute for Energy

    Current Role at StanfordManaging Director for the Bits and Watts Initiative, Precourt Institute for Energy
    Managing Director for the Net-Zero Alliance, Stanford Doerr School of Sustainability

  • Reginald Mitchell

    Reginald Mitchell

    Professor of Mechanical Engineering, Emeritus

    BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.

    Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.

    Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department.