Bio-X


Showing 801-900 of 926 Results

  • Aaron Straight

    Aaron Straight

    Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Samuel Strober

    Samuel Strober

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsMechanisms of immune tolerance; regulatory processes in autoimmunity and transplantation and extrathymic T cell maturation.

  • Thomas Sudhof

    Thomas Sudhof

    Avram Goldstein Professor in the School of Medicine and Professor, by courtesy, of Neurology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsInformation transfer at synapses mediates information processing in brain, and is impaired in many brain diseases. Thomas Südhof is interested in how synapses are formed, how presynaptic terminals release neurotransmitters at synapses, and how synapses become dysfunctional in diseases such as autism or Alzheimer's disease. To address these questions, Südhof's laboratory employs approaches ranging from biophysical studies to the electrophysiological and behavioral analyses of mutant mice.

  • Edith Vioni Sullivan

    Edith Vioni Sullivan

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsApplication of neuroimaging modalities and component process analysis of cognitive, sensory, and motor functions to identify brain structural and functional mechanisms disrupted in diseases affecting the brain: alcoholism, HIV infection, dementia, and normal aging from adolescence to senescence.

  • Yang Sun, MD, PhD

    Yang Sun, MD, PhD

    Associate Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsWe are interested in the role of inositol phosphatases in eye development and disease, using both animal models and human disease tissue. We are a translational laboratory seeking to understand the basic function of proteins as well as developing therapeutic strategies for clinical trials.

  • Zijie Sun

    Zijie Sun

    Professor of Urology, Emeritus

    Current Research and Scholarly InterestsWe focus on understanding the molecular mechanism of transcription factors that govern the transformation of normal cells to a neoplastic state. We are especially interested in nuclear hormone action and its interactions with other signaling pathways in tumor development and progression.

  • John B. Sunwoo

    John B. Sunwoo

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor, by courtesy, of Dermatology

    Current Research and Scholarly InterestsMy laboratory is focused on two primary areas of research: (1) the immune response to head and neck cancer and to a tumorigenic population of cells within these malignancies called cancer stem cells; (2) the developmental programs of a special lymphocyte population involved in innate immunity called natural killer (NK) cells; and (3) intra-tumor and inter-tumor heterogeneity.

  • Trisha Suppes, MD, PhD

    Trisha Suppes, MD, PhD

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult)

    Current Research and Scholarly InterestsLong-term treatment strategies for bipolar disorder, treatment for bipolar II disorder, use of treatment algorithms, and treatment of major depression.

  • Yuri Suzuki

    Yuri Suzuki

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    BioCondensed Matter Physics

    My group studies novel ground states and functionality in thin films and heterostructures. We exploit recent advances in atomically precise heteroepitaxy of complex oxides to develop new materials and to probe novel interface phenomena. Many of these phenomena are then incorporated into prototypical device structures. Our recent focus is on strongly correlated materials, especially new spintronic materials, as well as magnetic junction devices and magnetic logic circuits.

    Nanoscience and Quantum Engineering

    My group exploits atomically precise control of thin film materials synthesis and novel patterning techniques to fabricate nanostructures of correlated electron materials. Through these model systems, we develop a fundamental understanding of their behavior at the nanoscale and incorporate them into prototypical devices.

  • Katrin J Svensson

    Katrin J Svensson

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsMolecular metabolism

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    BioUsing and Understanding Cell-Free Biology

    Swartz Lab General Research Focus:

    The current and projected research in the Swartz lab balances basic research in microbial metabolism, protein expression, and protein folding with a strong emphasis on compelling applications. The power and versatility of cell-free methods coupled with careful evaluation and engineering of these new systems enables a whole new range of applications and scientific investigation. Fundamental research on: the mechanisms and kinetics of ribosomal function, fundamental bioenergetics, basic mechanisms of protein folding, functional genomics, and metabolic pathway analysis is motivated by a variety of near- and medium term applications spanning medicine, energy, and environmental needs.

    Swartz Lab Application Focus:

    In the medical area , current research addresses the need for patient-specific vaccines to treat cancer. Particularly for lymphomas, there is a strong need to be able to make a new cancer vaccine for each patient. Current technologies are not practical for this demanding task, but cell-free approaches are rapid and inexpensive. We have already demonstrated feasibility in mouse tumor challenge studies and are now expanding the range of applications and working to improve the relevant technologies. Experience with these vaccines has also suggested a new and exciting format for making inexpensive and very potent vaccines for general use.

    To address pressing needs for a new and cleaner energy source, we are working towards an organism that can efficiently capture solar energy and convert it into hydrogen. The first task is to develop an oxygen tolerant hydrogenase using cell-free technology to express libraries of mutated enzymes that can be rapidly screened for improved function. Even though these are very complex enzymes, we have produced active hydrogenases with our cell-free methods. We are now perfecting the screening methods for rapid and accurate identification of improved enzymes. After these new enzymes are identified, the project will progress toward metabolic engineering and bioreactor design research to achieve the scales and economies required.

    To address environmental needs, we are developing an improved water filters using an amazing membrane protein, Aquaporin Z. It has the ability to reject all other chemicals and ions except water. We have efficiently expressed the protein into lipid bilayer vesicles and are now working to cast these membranes on porous supports to complete the development of a new and powerful water purification technology. The same lessons will be applied toward the development of a new class of biosensors that brings high sensitivity and selectivity.

  • Karl Sylvester

    Karl Sylvester

    Professor of Surgery (Pediatric Surgery) at the Stanford University Medical Center

    Current Research and Scholarly InterestsOne of the current primary interests of the lab is to investigate the mechanisms by which hepatocellular injury and recovery is influenced and controlled by hepatocyte metabolism.

    A second focus of investigation is to identify molecular markers of human disease that provide diagnostic function, serve as targets for possible therapeutic manipulation, or provide insight into mechanisms of human disease. Specific diseases of interest include newborn sepsis and Necrotizing Enterocolitis (NEC).

  • Daniel Sze, MD, PhD

    Daniel Sze, MD, PhD

    Professor of Radiology (Interventional Radiology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsTransarterial administration of chemotherapeutics, radioactive microspheres, and biologics for the treatment of unresectable tumors; management of portal hypertension and complications of cirrhosis (TIPS); treatment of complications of organ transplantation; Venous and pulmonary arterial thrombolysis and reconstruction; Stent and Stent-graft treatment of peripheral vascular diseases, aneurysms, aortic dissections

  • Christopher N. Ta, MD

    Christopher N. Ta, MD

    Professor of Ophthalmology at the Stanford University Medical Center

    BioChristopher N. Ta, MD specializes in the diagnosis and medical treatment of cornea diseases. His areas of expertise are in the treatment of ocular infections, inflammation, dry eyes and ocular surface diseases. He has conducted numerous clinical trials toward the prevention and treatment of ocular infections. Dr. Ta also has extensive clinical experience in the treatment of ocular graft-versus host disease following hematopoietic stem cell transplantation.

  • William Talbot

    William Talbot

    Senior Associate Dean, Graduate Education & Postdoctoral Affairs and Professor of Developmental Biology

    Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • Hua Tang

    Hua Tang

    Professor of Genetics and, by courtesy, of Statistics

    Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.

  • Jean Y. Tang MD PhD

    Jean Y. Tang MD PhD

    Professor of Dermatology at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy research focuses on 2 main areas:

    1. Skin cancer:
    - New therapeutics to treat and prevent non-melanoma skin cancer, especially by targeting the Hedgehog signaling pathway for BCC tumors
    - Genomic analysis of drug-resistant cancers
    - Identifying risk factors for skin cancer in the Women's Health Initiative

    2. Epidermolysis Bullosa: gene therapy and protein therapy to replace defective/absent Collagen 7 in children and adults with Recessive Dystrophic EB

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology (Precision Health and Integrated Diagnostics)

    Current Research and Scholarly InterestsOur lab is dedicated to solving problems at the interface of engineering, soft matter, and biology. Current focus includes microfluidics fundamentals and applications in disease diagnostics (e.g., tuberculosis, sepsis, allergy), and single-cell wound repair and learning. For details see https://web.stanford.edu/group/tanglab/

  • William Abraham Tarpeh

    William Abraham Tarpeh

    Assistant Professor of Chemical Engineering, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioReimagining liquid waste streams as resources can lead to recovery of valuable products and more efficient, less costly approaches to reducing harmful discharges to the environment. Pollutants in effluent streams can be captured and used as valuable inputs to other processes. For example, municipal wastewater contains resources like energy, water, nutrients, and metals. The Tarpeh Lab develops and evaluates novel approaches to resource recovery from “waste” waters at several synergistic scales: molecular mechanisms of chemical transport and transformation; novel unit processes that increase resource efficiency; and systems-level assessments that identify optimization opportunities. We employ understanding of electrochemistry, separations, thermodynamics, kinetics, and reactor design to preferentially recover resources from waste. We leverage these molecular-scale insights to increase the sustainability of engineered processes in terms of energy, environmental impact, and cost.

  • Daniel Tartakovsky

    Daniel Tartakovsky

    Professor of Energy Resources Engineering

    Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.

  • Vivianne Tawfik

    Vivianne Tawfik

    Assistant Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy overall research interest is to understand how the immune system interacts with the nervous system after injury to promote the transition from acute to chronic pain. In my clinical practice I care for patients with persistent pain that often occurs after minor trauma such as fracture or surgery. Using basic science approaches including whole system immune phenotyping with mass cytometry and genetic manipulation of peripheral and central immune cells, we seek to dissect the temporal and tissue-specific contribution of these cells to either promotion or inhibition of healing.

  • Mary Frances Nunez Teruel

    Mary Frances Nunez Teruel

    Assistant Professor of Chemical and Systems Biology

    Current Research and Scholarly InterestsThe Teruel Lab uses a combination of engineering and biological approaches including high-throughput screening of RNAi and DNA construct libraries, CRISPR libraries, targeted mass spectrometry, live-cell fluorescence microscopy, and bioinformatics to investigate the systems biology of cell differentiation and tissue renegeneration, with a particular focus on uncovering the molecular mechanisms underlying insulin resistance, diabetes, and obesity.

  • Avnesh Thakor

    Avnesh Thakor

    Assistant Professor of Radiology (Pediatric Radiology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsOver the past decade there has been tremendous advances in the field of Interventional Oncology with the clinical utilization of multiple new innovative locoregional therapies (i.e. chemoembolization, percutaneous ablation). Looking forward, our ability to superselectively deliver new therapies such as nanoparticles, stem cells and gene therapy will open new pathways for Interventional Radiology into the emerging field of Regenerative Medicine.

  • Suzanne Tharin

    Suzanne Tharin

    Assistant Professor of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Robert Tibshirani

    Robert Tibshirani

    Professor of Biomedical Data Science and of Statistics

    Current Research and Scholarly InterestsMy research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from enzyme engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational analysis.

  • Natalie Torok

    Natalie Torok

    Professor of Medicine (Gastroenterology and Hepatology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy laboratory has been focusing on the mechanism of liver fibrogenesis and the role of hepatocyte cell death in fibrogenic injury. We have demonstrated the intricate link between hepatocyte cell death, generation of apoptotic bodies and their phagocytosis by stellate cells triggering fibrogenic activation. Key to this was the activation of the NADPH oxidase and production of reactive oxidative species inducing stellate cell transdifferentiation and collagen I transcription (Gastroenterology, 2010).
    We have expanded our work focusing on the role of non-phagocytic NADPH oxidases including NOX4 in dysregulating insulin responses and precipitating stress signaling in non-alcoholic steatohepatitis. (Gastroenterology, 2015). As patients with type II diabetes mellitus develop more progressive liver disease we are now studying how advanced glycation end products (AGEs) engage RAGE signaling in the liver and NADPH oxidase-mediated redox stress.
    Our ultimate goal is to translate our findings and develop novel therapeutic approaches that reverse fibrosis in NASH and improve patient outcomes.

  • Philip S. Tsao, PhD

    Philip S. Tsao, PhD

    Professor (Research) of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsOur primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.

  • Richard Tsien

    Richard Tsien

    George D. Smith Professor, Emeritus

    Current Research and Scholarly InterestsWe study synaptic communication between brain cells with the goal of understanding neuronal computations and memory mechanisms. Main areas of focus include: presynaptic calcium channels, mechanisms of vesicular fusion and recycling. Modulation of synaptic strength through changes in postsynaptic receptors and dendritic morphology. Signaling that links synaptic activity to nuclear transcription and local protein translation. Techniques include imaging, electrophysiology, molecular biology.

  • Shripad Tuljapurkar

    Shripad Tuljapurkar

    The Dean and Virginia Morrison Professor of Population Studies

    Current Research and Scholarly InterestsStochastic dynamics of human and natural populations; prehistoric societies; probability forecasts including sex ratios, mortality, aging and fiscal balance; life history evolution.

  • Minang (Mintu) Turakhia

    Minang (Mintu) Turakhia

    Associate Professor of Medicine (Cardiovascular Medicine) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsDr. Turakhia has an active clinical research program, with funding from AHA, VA, NIH, the medical device industry, and foundations. His research program aims to improve the treatment of heart rhythm disorders, with an emphasis on atrial fibrillation, by evaluating quality and variation of care, comparative and cost-effectiveness of therapies, and risk prediction. Dr. Turakhia has extensive expertise in using large administrative and claims databases for this work. His TREAT-AF retrospective study of over 500,000 patients with newly-diagnosed AF is the largest known research cohort of AF patients. He has served as study PI or chairman of several prominent single- and multicenter trials in atrial fibrillation, investigational devices for electrophysiology procedures, digital health interventions, and sensor technologies.

    His other research interests include technology assessment of new device-based therapies and the impact of changing health policy and reform on the delivery of arrhythmia care. Dr. Turakhia is a Fellow of the American Heart Association, American College of Cardiology, and Heart Rhythm Society.

  • Alexander Eckehart Urban

    Alexander Eckehart Urban

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics

    Current Research and Scholarly InterestsComplex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.

  • PJ Utz

    PJ Utz

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsThe long-term research goal of Utz laboratory is (1) to develop a better understanding of the pathogenic mechanisms underlying systemic lupus erythematosus (SLE) and other autoimmune diseases by exploring signaling pathways that are activated during apoptosis; and (2) to better understand the complicated process of programmed cell death.

  • Tulio Valdez

    Tulio Valdez

    Associate Professor of Otolaryngology (Pediatric) and, by courtesy, of Pediatrics at the Lucile Salter Packard Children's Hospital

    BioDr. Tulio A Valdez is a surgeon scientist born and raised in Colombia with a subspecialty interest in Pediatric Otolaryngology. He attended medical school at Universidad Javeriana in Bogota Colombia before undertaking his residency in Otolaryngology, Head and Neck Surgery in Boston. He completed his Pediatric Otolaryngology Fellowship at Texas Children’s Hospital (2007), Houston and obtained his Master’s in Clinical and Translational Research at the University of Connecticut.

    Clinically, Dr. Valdez has an interest in airway surgery and swallowing disorders. He has a special interest in the management of sinus disease in cystic fibrosis. Dr. Valdez has co-authored one textbook and numerous book chapters and scientific manuscripts. Dr. Valdez continues his clinical research in these areas, particularly with a focus on aerodigestive disorders.

    Scientifically, Dr. Valdez has developed various imaging methods to diagnose otitis media and cholesteatoma a middle ear condition that can lead to hearing loss. He was part of the Laser Biomedical Research Center at Massachusetts Institute of Technology. His research includes novel imaging modalities to better diagnose ear infections one of the most common pediatric problems. His research has now expanded to include better intraoperative imaging modalities in pediatric patients to improve surgical outcomes without the need for radiation exposure. 

    Dr. Valdez believes in the multi-disciplinary collaborations to tackle medical problems and has co-invented various medical devices and surgical simulation models.

  • Gregory Valiant

    Gregory Valiant

    Assistant Professor of Computer Science

    Current Research and Scholarly InterestsMy primary research interests lie at the intersection of algorithms, learning, applied probability, and statistics. I am particularly interested in understanding the algorithmic and information theoretic possibilities and limitations for many fundamental information extraction tasks that underly real-world machine learning and data-centric applications.

  • Matt van de Rijn

    Matt van de Rijn

    Sabine Kohler, MD, Professor in Pathology

    Current Research and Scholarly InterestsOur research focuses on molecular analysis of human soft tissue tumors (sarcomas) with an emphasis on leiomyosarcoma and desmoid tumors. In addition we study the role of macrophages in range of malignant tumors.

  • Capucine van Rechem

    Capucine van Rechem

    Assistant Professor of Pathology (Pathology Research)

    Current Research and Scholarly InterestsMy long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis.

  • Benjamin Van Roy

    Benjamin Van Roy

    Professor of Electrical Engineering, of Management Science and Engineering

    BioBenjamin Van Roy is a Professor at Stanford University, where he has served on the faculty since 1998. His research focuses on understanding how an agent interacting with a poorly understood environment can learn over time to make effective decisions. He is interested in the design of efficient reinforcement learning algorithms, understanding what is possible or impossible in this domain, and applying the technology toward the benefit of society. Beyond academia, he leads a DeepMind Research team in Mountain View, and has also led research programs at Unica (acquired by IBM), Enuvis (acquired by SiRF), and Morgan Stanley.

    He is a Fellow of INFORMS and IEEE and has served on the editorial boards of Machine Learning, Mathematics of Operations Research, for which he co-edits the Learning Theory Area, Operations Research, for which he edited the Financial Engineering Area, and the INFORMS Journal on Optimization.

    He received the SB in Computer Science and Engineering and the SM and PhD in Electrical Engineering and Computer Science, all from MIT. He has been a recipient of the MIT George C. Newton Undergraduate Laboratory Project Award, the MIT Morris J. Levin Memorial Master's Thesis Award, the MIT George M. Sprowls Doctoral Dissertation Award, the National Science Foundation CAREER Award, the Stanford Tau Beta Pi Award for Excellence in Undergraduate Teaching, and the Management Science and Engineering Department's Graduate Teaching Award. He has held visiting positions as the Wolfgang and Helga Gaul Visiting Professor at the University of Karlsruhe, the Chin Sophonpanich Foundation Professor and the InTouch Professor at Chulalongkorn University, a Visiting Professor at the National University of Singapore, and a Visiting Professor at the Chinese University of Hong Kong, Shenzhen.

  • Shreyas Vasanawala, MD/PhD

    Shreyas Vasanawala, MD/PhD

    Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsOur group is focused on developing new fast and quantitative MRI techniques.

  • Anand Veeravagu

    Anand Veeravagu

    Assistant Professor of Neurosurgery and, by courtesy, of Orthopaedic Surgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe focus of my laboratory is to utilize precision medicine techniques to improve the diagnosis and treatment of neurologic conditions. From traumatic brain injury to spinal scoliosis, the ability to capture detailed data regarding clinical symptoms and treatment outcomes has empowered us to do better for patients. Utilize data to do better for patients, that’s what we do.

    Stanford Neurosurgical Ai and Machine Learning Lab
    http://med.stanford.edu/neurosurgery/research/AILab.html

  • Jose Vilches-Moure

    Jose Vilches-Moure

    Assistant Professor of Comparative Medicine at the Stanford University Medical Center

    BioDr. José G. Vilches-Moure, DVM, PhD, Assistant Professor, received his DVM degree from Purdue University in Indiana in 2007. He completed his residency training in Anatomic Pathology (with emphasis in pathology of laboratory animal species) and his PhD in Comparative Pathology at the University of California-Davis. He joined Stanford in 2015, and is the Director of the Animal Histology Services (AHS). Dr. Vilches-Moure is a diplomate of the American College of Veterinary Pathologists, and his collaborative research interests include cardiac development and pathology, developmental pathology, and refinement of animal models in which to study early cancer detection techniques. His teaching interests include comparative anatomy/histology, general pathology, comparative pathology, and pathology of laboratory animal species.

  • Anne Villeneuve

    Anne Villeneuve

    Professor of Developmental Biology and of Genetics

    Current Research and Scholarly InterestsMechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.

  • Hannes Vogel MD

    Hannes Vogel MD

    Professor of Pathology and of Pediatrics (Pediatric Genetics) and, by courtesy, of Neurosurgery and of Comparative Medicine at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy research interests include nerve and muscle pathology, mitochondrial diseases, pediatric neurooncology, and transgenic mouse pathology.

  • Douglas Vollrath

    Douglas Vollrath

    Associate Professor of Genetics and, by courtesy, of Ophthalmology

    Current Research and Scholarly InterestsThe Vollrath lab works to uncover molecular mechanisms relevant to the health and pathology of the outer retina. We study the retinal pigment epithelium (RPE), a cell monolayer adjacent to photoreceptors that performs a variety of tasks crucial for retinal homeostasis. Specific areas of interest include the circadian regulation of RPE phagocytosis of photoreceptor outer segment tips, and how RPE metabolic dysfunction contributes to retinal degenerative diseases.

  • Jelena Vuckovic

    Jelena Vuckovic

    Jensen Huang Professor of Global Leadership and Professor, by courtesy, of Applied Physics

    Current Research and Scholarly Interestsphotonics, quantum technologies, quantum optics, inverse design

  • Anthony Wagner

    Anthony Wagner

    Lucie Stern Professor in the Social Sciences

    Current Research and Scholarly InterestsCognitive neuroscience of memory and cognitive/executive control in young and older adults. Research interests include encoding and retrieval mechanisms; interactions between declarative, nondeclarative, and working memory; forms of cognitive control; neurocognitive aging; functional organization of prefrontal cortex, parietal cortex, and the medial temporal lobe; assessed by functional MRI, scalp and intracranial EEG, and transcranial magnetic stimulation.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    BioSoichi Wakatsuki is a Professor of Photon Science at the SLAC National Accelerator Laboratory where he recently initiated the Biociences Division, and Professor of Structural Biology, Stanford School of Medicine. He received his B.S and M.S. degrees in Chemical Engineering from University of Tokyo, and his Ph.D. degree in Chemistry from Stanford University in 1991. After postdoctoral studies on time-resolved x-ray crystallography of enzyme reactions in Oxford (1990 to 1994), he moved to Grenoble, France in 1994 to work at the European Synchrotron Radiation Facility (ESRF) where he led Joint Structural Biology Group to develop high-brilliance x-ray crystallography beamlines and instruments, as well as several structural biology projects on protein transport. In 2000, Soichi moved back to Japan to start a new Structural Biology Research Center at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan, and later served as Director of Photon Factory (national synchrotron radiation facility) from 2006 to 2012. There he further developed x-ray beamlines and a large scale protein crystallization system, led initiatives to start three national projects on structural proteomics. Fascinated by new research opportunities in integrative bioimaging at Stanford and the world’s first hard x-ray free electron laser (XFEL) at SLAC, Soichi returned to Stanford in 2013. Soichi’s research interests include structural biology of post-translational modification and vesicle transport, structural biology of polyubiquitin recognition, synchrotron radiation and XFEL instrumentation, protein crystallography and small angle X-ray scattering, integrative multi-scale bioimaging.

  • Virginia Walbot

    Virginia Walbot

    Professor of Biology

    Current Research and Scholarly InterestsOur current focus is on maize anther development to understand how cell fate is specified. We discovered that hypoxia triggers specification of the archesporial (pre-meiotic) cells, and that these cells secrete a small protein MAC1 that patterns the adjacent soma to differentiate as endothecial and secondary parietal cell types. We also discovered a novel class of small RNA: 21-nt and 24-nt phasiRNAs that are exceptionally abundant in anthers and exhibit strict spatiotemporal dynamics.

  • Ken Waldron

    Ken Waldron

    Professor (Research) of Mechanical Engineering, Emeritus

    BioKenneth J. Waldron is Professor of Mechanical and Mechatronic Engineering at UTS. He is also Professor Emeritus from the Design Group in the Department of Mechanical Engineering of Stanford University. He holds bachelors and masters degrees from the University of Sydney, and PhD from Stanford. He works in machine design, and design methodology with a particular focus on robotic and mechatronic systems.

  • Dennis Wall

    Dennis Wall

    Associate Professor of Pediatrics (Systems Medicine), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease

  • Guenther Walther

    Guenther Walther

    Professor of Statistics

    BioGuenther Walther studied mathematics, economics, and computer science at the University of Karlsruhe in Germany and received his Ph.D. in Statistics from UC Berkeley in 1994.

    His research has focused on statistical methodology for detection problems, shape-restricted inference, and mixture analysis, and on statistical problems in astrophysics and in flow cytometry.

    He received a Terman fellowship, a NSF CAREER award, and the Distinguished Teaching Award of the Dean of Humanities and Sciences at Stanford. He has served on the editorial boards of the Journal of Computational and Graphical Statistics, the Journal of the Royal Statistical Society, the Annals of Statistics, the Annals of Applied Statistics, and Statistical Science. He was program co-chair of the 2006 Annual Meeting of the Institute of Mathematical Statistics and served on the executive committee of IMS from 1998 to 2012.

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes.

  • Tom Wandless

    Tom Wandless

    Professor of Chemical and Systems Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.

  • Adam Wang

    Adam Wang

    Assistant Professor of Radiology and, by courtesy, of Electrical Engineering

    BioMy group develops technologies for advanced x-ray and CT imaging, including novel system design, model-based image reconstruction, spectral imaging, and radiation transport methods. I am also the Director of the Zeego Lab and the Tabletop X-Ray Lab.

    I completed my PhD in Electrical Engineering at Stanford under the supervision of Dr. Norbert Pelc, developing strategies for maximizing the information content of dual energy CT and photon counting detectors. I then pursued a postdoc at Johns Hopkins with Dr. Jeff Siewerdsen in Biomedical Engineering, developing reconstruction and registration methods for x-ray based image-guided surgery. Prior to returning to Stanford in 2018, I was a Senior Scientist at Varian Medical Systems, developing x-ray/CT methods for image-guided radiation therapy.

  • Bo Wang

    Bo Wang

    Assistant Professor of Bioengineering and, by courtesy, of Developmental Biology

    BioWe are a discovery-driven research group working at the interface between developmental biology, bioengineering, and statistical physics. We combine quantitative organism-wide fluorescence imaging ("deep imaging"), functional genomics ("deep sequencing"), and physical modeling to understand the fundamental rules that control collective cell behaviors to optimize tissue regeneration, adaptation, and evolution. We also seek for opportunities for applying these rules to improve multicellular engineering systems.

  • Kevin Wang, MD, PhD

    Kevin Wang, MD, PhD

    Assistant Professor of Dermatology

    Current Research and Scholarly InterestsThe Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.

  • Paul  J. Wang, MD

    Paul J. Wang, MD

    Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang has active collaborations with Bioengineering, Mechanical Engineering, and Electrical Engineering Departments at Stanford.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Wang is the Director of Stanford Center for Magnetic Nanotechnology, and the Co-PI of the Stanford Center for Cancer Nanotechnology Excellence. His research interests lie in nanotechnology and information storage, including magnetic/spintronic biochips, in vitro diagnostics, cell sorting, magnetic nanoparticles, nano-patterning, spin electronic materials and sensors, as well as magnetic integrated inductors and transformers.

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on understanding the molecular mechanisms that underlie retinal development and diseases. We utilize genetic and genomic tools to uncover how different types of retinal cells, including retinal neurons, glia and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels, and how they interact and collectively contribute to the integrity of the retina.

    1. Retinal cell fate specification.
    We are using genetic tools and methods, such as in vivo plasmid electroporation and CRISPR, to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal cell fate specification.

    2. The multicellular responses elicited by diabetes in the retina.
    Diabetes can induce multicellular responses in the retina, including vascular lesions, glial dysfunction and neurodegeneration, all of which contribute to retinopathy. We are using diabetic rats as models to investigate the detailed molecular mechanisms underlying the diabetes-induced multicellular responses, and the disease mechanisms of diabetic retinopathy.

    3. Molecular tools that allow for cell type-specific labeling and manipulation in vivo.
    Cis-regulatory elements, such as enhancers, play essential roles in directing tissue/cell type-specific and stage-specific expression. We are interested in identifying enhancers that can drive cell type-specific expression in the retina and brain, and incorporating them into plasmid or AAV based delivery systems.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Robert Waymouth

    Robert Waymouth

    Robert Eckles Swain Professor in Chemistry and Professor, by courtesy, of Chemical Engineering

    BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including sustainable polymers, synthetic fuels, and bioactive molecules. In one such breakthrough, Professor Waymouth and IBM researcher Jim Hedrick opened a new path for production of environmentally sustainable plastics and improved plastics recycling, earning recognition in the 2012 Presidential Green Chemistry Award.

    Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.

    Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. The Waymouth group pioneered the development of catalysts that can access multiple kinetic states during a polymerization reaction in order to control sequence distribution. They devised a novel strategy for the synthesis of elastomeric polypropylene utilizing a metallocene catalyst whose structure was designed to interconvert between chiral and achiral coordination geometries on the timescale of the synthesis of a single polymer chain.

    In collaboration with Jim Hedrick of IBM laboratories, the Waymouth Group has developed an extensive platform of organic catalysts for the controlled ring-opening polymerization of lactones, carbonates and other heterocyclic monomers. Mechanistic studies of nucleophilic N-heterocyclic carbene catalysts revealed an unusual zwitterionic ring-opening polymerization method which enabled the synthesis of high molecular weight cyclic polymers, a novel topology for these biodegradable and biocompatible macromolecules. In collaboration with the Wender group, the Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver drugs and probes into cells. These efforts combine elements of mechanistic organic and organometallic chemistry, polymer synthesis, and homogeneous catalysis to rationally design new macromolecular structures.

  • Katja Gabriele Weinacht, MD, PhD

    Katja Gabriele Weinacht, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)

    Current Research and Scholarly InterestsPediatric Hematopoietic Stem Cell Transplantation
    DiGeorge Syndrome
    Genetic Immune Diseases
    Immune Dysregulation

  • William Weis

    William Weis

    William M. Hume Professor in the School of Medicine, Professor of Structural Biology, of Molecular and Cellular Physiology and of Photon Science

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our specific areas of interest are the architecture and dynamics of intercellular adhesion junctions, the molecular basis of cell polarity, and the Wnt signaling pathway. We also have a long-standing interest in carbohydrate-based cellular recognition and adhesion.

  • Irving Weissman

    Irving Weissman

    Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology and, by courtesy, of Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Paula V. Welander

    Paula V. Welander

    Associate Professor of Environmental Earth System Science

    Current Research and Scholarly InterestsBiosynthesis of lipid biomarkers in modern microbes; molecular geomicrobiology; microbial physiology

  • Paul Wender

    Paul Wender

    Francis W. Bergstrom Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis

  • Gerlinde Wernig

    Gerlinde Wernig

    Assistant Professor of Pathology at the Stanford University Medical Center

    Current Research and Scholarly InterestsFibrotic diseases kill more people than cancer in this country and worldwide. We believe that scar-forming cells called fibroblasts are at the core of the fibrotic response in parenchymal organ fibrosis in the lung, liver, skin, bone marrow and tumor stroma. At the cellular level we think of fibrosis as a step wise process which implicates inflammation and fibrosis. We seek to identify new effective immune therapy targets to treat fibrotic diseases.

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology at the Stanford University Medical Center

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics, machine vision, optics, scientific computing, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, display, wearable computing, and microscopy systems. Prior to joining Stanford in 2014, Prof. Wetzstein was a Research Scientist in the Camera Culture Group at MIT. He received a Ph.D. in Computer Science from the University of British Columbia in 2011 and graduated with Honors from the Bauhaus in Weimar, Germany before that. He is the recipient of an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), a Terman Fellowship, an Okawa Research Grant, the Electronic Imaging Scientist of the Year 2017 Award, an Alain Fournier Ph.D. Dissertation Award, and a Laval Virtual Award as well as Best Paper and Demo Awards at ICCP 2011, 2014, and 2016 and at ICIP 2016.

  • Cornelia Weyand

    Cornelia Weyand

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsTelomere biology and genomic stress in autoimmunity and inflammation

  • Matthew Wheeler

    Matthew Wheeler

    Assistant Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

  • Bernard Widrow

    Bernard Widrow

    Professor of Electrical Engineering, Emeritus

    Current Research and Scholarly InterestsProf. Widrow's research focuses on adaptive signal processing, adaptive control systems, adaptive neural networks, human memory, and human-like memory for computers. Applications include signal processing, prediction, noise cancelling, adaptive arrays, control systems, and pattern recognition. Recent work is about human learning at the synaptic level.

  • Leanne Williams

    Leanne Williams

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and, by courtesy, of Psychology

    Current Research and Scholarly InterestsA revolution is under way in psychiatry. We can now understand mental illness as an expression of underlying brain circuit disruptions, shaped by experience and genetics. Our lab is defining precision brain circuit types for depression, anxiety and attention deficit. We apply computational models to large amounts of brain imaging, behavior and other data. These precision brain types inform our translational intervention studies. To close the loop, field ready insights are applied in practice.

  • Nolan Williams

    Nolan Williams

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology) at the Stanford University Medical Center

    BioDr. Williams is an Assistant Professor within the Department of Psychiatry and Behavioral Sciences and the Director of the Stanford Brain Stimulation Lab. Dr. Williams has a broad background in neuropsychiatry and is double board-certified in both neurology and psychiatry. In addition, he has specific training and clinical expertise in the development of brain stimulation methodologies under Mark George, MD. Themes of his work include (a) examining the use of spaced learning theory in the application of neurostimulation techniques, (b) development and mechanistic understanding of rapid-acting antidepressants, and (c) identifying objective biomarkers that predict neuromodulation responses in treatment-resistant neuropsychiatric conditions. He has published papers in high impact peer-reviewed journals including Brain, American Journal of Psychiatry, and the Proceedings of the National Academy of Science. He has also contributed to two reviews related to novel therapeutics for neuropsychiatric conditions that have been published in the Journal of Clinical Investigation and Current Opinion in Neurobiology, which are both highly cited. Results from his studies have gained widespread attention in journals such as Science and New England Journal of Medicine Journal Watch as well as in the popular press and have been featured in various news sources including Time, Smithsonian, and Newsweek. Dr. Williams received two NARSAD Young Investigator Awards in 2016 and 2018 along with the 2019 Gerald R. Klerman Award. He started the Stanford Brain Stimulation Lab in 2015. He has received several merit-based travel awards to attend and present at the annual meetings for American College of Neuropharmacology, Society of Biological Psychiatry, the American Academy of Neurology and the American Neuropsychiatric Association.

  • Darrell Wilson

    Darrell Wilson

    Professor of Pediatrics (Endocrinology) at the Lucile Salter Packard Children's Hospital, Emeritus

    Current Research and Scholarly InterestsMy research interests cover a number of areas in Pediatric Endocrinology and Diabetes. I am PI of the Stanford Center for the NIH-funded Type-1 Diabetes TrialNet group. TrialNet conducts clinical trials directed at preventing or delaying the onset of Type 1 diabetes. I am an investigator in DirecNet, another NIH-funded study group, which is devoted to evaluating glucose sensors and the role of technology on the management of diabetes.

  • Virginia Winn

    Virginia Winn

    Associate Professor of Obstetrics and Gynecology (Reproductive and Stem Cell Biology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe Winn Laboratory seeks to understand the unique aspects of human placental biology that contribute to pregnancy complications. Abnormalities in placental biology lead to more than 25% of pregnancy complications that impact the health of mothers and their babies. The primary focus of Dr. Winn's lab is to understand human placentation and preeclampsia pathogenesis. Both basic science and translational approaches are undertaken.

  • Terry Winograd

    Terry Winograd

    Professor of Computer Science, Emeritus

    BioProfessor Winograd's focus is on human-computer interaction design and the design of technologies for development. He directs the teaching programs and HCI research in the Stanford Human-Computer Interaction Group, which recently celebrated it's 20th anniversary. He is also a founding faculty member of the Hasso Plattner Institute of Design at Stanford (the "d.school") and on the faculty of the Center on Democracy, Development, and the Rule of Law (CDDRL)

    Winograd was a founding member and past president of Computer Professionals for Social Responsibility. He is on a number of journal editorial boards, including Human Computer Interaction, ACM Transactions on Computer Human Interaction, and Informatica. He has advised a number of companies started by his students, including Google. In 2011 he received the ACM SIGCHI Lifetime Research Award.

  • Monte Winslow

    Monte Winslow

    Associate Professor of Genetics and of Pathology

    Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.

  • Max Wintermark

    Max Wintermark

    Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurology, of Neurosurgery and of Psychiatry and Behavioral Sciences at the Stanford University Medical Center

    Current Research and Scholarly InterestsStroke, cerebrovascular diseases, cardiovascular diseases, carotid arteries, coronary arteries
    Stroke diagnosis, stroke triage, stroke treatment
    Traumatic brain injury
    Traumatic brain injury diagnosis and prognosis
    Psychiatric disorders, including depression and post-traumatic stress disorders
    Epilepsy
    Movement disorders, including essential tremor and Parkinson’s tremor
    Brain tumors
    Image-guided clinical trials
    CT, multidetector-row CT, perfusion-CT, CT angiography
    MRI, diffusion-weighted MRI, perfusion-weighted MRI, diffusion tensor imaging, functional MRI
    Brain perfusion imaging techniques
    Functional imaging
    Post-processing techniques of medical images, signal and image processing
    3D visualization
    MR-guided focused ultrasound

  • H.-S. Philip Wong

    H.-S. Philip Wong

    Willard R. and Inez Kerr Bell Professor in the School of Engineering

    BioWong joined Stanford in 2004 after 16 years at IBM Research, with appointments as research staff member, Manager, and Senior Manager. While at IBM, he was responsible for shaping and executing IBM's strategy on nanoscale science and technology and silicon technology. His interests are in the area of nanoscale science and technology, semiconductor technology, solid-state devices, and electronic imaging.

    His present research covers a broad range of topics including carbon electronics, 2D layered materials, wireless implantable biosensors, directed self-assembly, nanoelectromechanical relays, device modeling, brain-inspired computing, and non-volatile memory devices such as phase change memory and metal oxide resistance change memory.

  • S Simon Wong

    S Simon Wong

    Professor of Electrical Engineering

    Current Research and Scholarly InterestsCurrent research focuses on

    Resistive Random Access Memory (RRAM) and Integration with CMOS

    Energy Efficient Approximate Computing for Machine Learning

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor in Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.

  • Edward H. Wood, MD

    Edward H. Wood, MD

    Assistant Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsEdward H. Wood, MD is an assistant professor of ophthalmology practicing adult and pediatric vitreoretinal surgery at Stanford University School of Medicine. Dr. Wood engages in translational research with the goal of developing new therapies and approaches for patients without viable treatment options. He does so through leveraging the technologies of patient derived stem cells, optogenetics, and phenotypic drug screening in conjunction with active clinical research and surgical device development. Dr. Wood has filed numerous patents and founded several healthcare startups with the goal of improving patients’ quality of life. His research interests include regenerative medicine, drug discovery, and pediatric retinal disease with the ultimate goal of pursuing basic science discoveries with potential for impactful clinical translation. His research interests are significantly inspired by his patients, and he is driven towards not only delivering the highest quality of care currently available, but also in developing the future standard of care in the field of medical retina and vitreoretinal surgery.

  • Sherry M. Wren, MD, FACS, FCS(ECSA)

    Sherry M. Wren, MD, FACS, FCS(ECSA)

    Professor of Surgery (General Surgery) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsOur research interests are primarily in global surgery,robotics,surgical oncology, especially gastrointestinal cancers.

  • Albert Y. Wu, MD, PhD, FACS

    Albert Y. Wu, MD, PhD, FACS

    Assistant Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.

  • Hsi-Yang Wu

    Hsi-Yang Wu

    Current Research and Scholarly InterestsI am interested in how the brain matures to control the bladder and external sphincter to achieve urinary continence. Using functional MRI of the brain, we are investigating if certain patterns of activity will predict which children will respond to therapy for incontinence.

  • Joseph  C. Wu

    Joseph C. Wu

    Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology

    Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using biobank of cardiac iPSC lines.

  • Joy Wu

    Joy Wu

    Associate Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsMy laboratory focuses on the pathways that regulate the differentiation of mesenchymal stem cells into the osteoblast and adipocyte lineages. We are also studying the role of osteoblasts in the hematopoietic and cancer niches in the bone marrow microenvironment.

  • Sean M. Wu

    Sean M. Wu

    Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMy lab seeks to identify mechanisms regulating cardiac lineage commitment during embryonic development and the biology of cardiac progenitor cells in development and disease. We believe that by understanding the transcriptional and epigenetic basis of cardiomyocyte growth and differentiation, we can identify the most effective ways to repair diseased adult hearts. We employ mouse and human embryonic and induced pluripotent stem cells as well as rodents as our in vivo models for investigation.

  • Courtney Wusthoff, MD

    Courtney Wusthoff, MD

    Associate Professor of Neurology and, by courtesy, of Pediatrics (Neonatology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy projects focus on clinical research in newborns with, or at risk, for brain injury. I use EEG in at-risk neonates to better understand the underlying pathophysiology of risk factors that may lead to worse outcomes. I am particularly interested in neonatal seizures and how they may exacerbate perinatal brain injury with a goal to identify treatments that might protect the vulnerable brain. I am also interested in EEG in other pediatric populations, as well as medical ethics and global health.

  • Joanna Wysocka

    Joanna Wysocka

    Lorry Lokey Professor and Professor of Developmental Biology

    Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.

  • Tony Wyss-Coray, PhD

    Tony Wyss-Coray, PhD

    D. H. Chen Professor II

    Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.

  • Yan Xia

    Yan Xia

    Assistant Professor of Chemistry

    Current Research and Scholarly InterestsOrganic Chemistry, Polymer Chemistry, Organic Optoelectronic Materials, Microporous Polymers, Responsive Polymers, Polymer Networks, Self-Assembly