Bio-X


Showing 801-878 of 878 Results

  • Anne Villeneuve

    Anne Villeneuve

    Professor of Developmental Biology and of Genetics

    Current Research and Scholarly InterestsMechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.

  • Douglas Vollrath

    Douglas Vollrath

    Associate Professor of Genetics and, by courtesy, of Ophthalmology

    Current Research and Scholarly InterestsThe Vollrath lab works to uncover molecular mechanisms relevant to the health and pathology of the outer retina. We study the retinal pigment epithelium (RPE), a cell monolayer adjacent to photoreceptors that performs a variety of tasks crucial for retinal homeostasis. Specific areas of interest include the circadian regulation of RPE phagocytosis of photoreceptor outer segment tips, and how RPE metabolic dysfunction contributes to retinal degenerative diseases.

  • Jelena Vuckovic

    Jelena Vuckovic

    Jensen Huang Professor of Global Leadership and Professor, by courtesy, of Applied Physics

    Current Research and Scholarly Interestsphotonics, quantum technologies, quantum optics, inverse design

  • Anthony Wagner

    Anthony Wagner

    Lucie Stern Professor in the Social Sciences

    Current Research and Scholarly InterestsCognitive neuroscience of memory and cognitive/executive control in young and older adults. Research interests include encoding and retrieval mechanisms; interactions between declarative, nondeclarative, and working memory; forms of cognitive control; neurocognitive aging; functional organization of prefrontal cortex, parietal cortex, and the medial temporal lobe; assessed by functional MRI, scalp and intracranial EEG, and transcranial magnetic stimulation.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    BioSoichi Wakatsuki is a Professor of Photon Science at the SLAC National Accelerator Laboratory where he recently initiated the Biociences Division, and Professor of Structural Biology, Stanford School of Medicine. He received his B.S and M.S. degrees in Chemical Engineering from University of Tokyo, and his Ph.D. degree in Chemistry from Stanford University in 1991. After postdoctoral studies on time-resolved x-ray crystallography of enzyme reactions in Oxford (1990 to 1994), he moved to Grenoble, France in 1994 to work at the European Synchrotron Radiation Facility (ESRF) where he led Joint Structural Biology Group to develop high-brilliance x-ray crystallography beamlines and instruments, as well as several structural biology projects on protein transport. In 2000, Soichi moved back to Japan to start a new Structural Biology Research Center at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan, and later served as Director of Photon Factory (national synchrotron radiation facility) from 2006 to 2012. There he further developed x-ray beamlines and a large scale protein crystallization system, led initiatives to start three national projects on structural proteomics. Fascinated by new research opportunities in integrative bioimaging at Stanford and the world’s first hard x-ray free electron laser (XFEL) at SLAC, Soichi returned to Stanford in 2013. Soichi’s research interests include structural biology of post-translational modification and vesicle transport, structural biology of polyubiquitin recognition, synchrotron radiation and XFEL instrumentation, protein crystallography and small angle X-ray scattering, integrative multi-scale bioimaging.

  • Virginia Walbot

    Virginia Walbot

    Professor of Biology

    Current Research and Scholarly InterestsOur current focus is on maize anther development to understand how cell fate is specified. We discovered that hypoxia triggers specification of the archesporial (pre-meiotic) cells, and that these cells secrete a small protein MAC1 that patterns the adjacent soma to differentiate as endothecial and secondary parietal cell types. We also discovered a novel class of small RNA: 21-nt and 24-nt phasiRNAs that are exceptionally abundant in anthers and exhibit strict spatiotemporal dynamics.

  • Ken Waldron

    Ken Waldron

    Professor (Research) of Mechanical Engineering, Emeritus

    BioKenneth J. Waldron is Professor of Mechanical and Mechatronic Engineering at UTS. He is also Professor Emeritus from the Design Group in the Department of Mechanical Engineering of Stanford University. He holds bachelors and masters degrees from the University of Sydney, and PhD from Stanford. He works in machine design, and design methodology with a particular focus on robotic and mechatronic systems.

  • Dennis Wall

    Dennis Wall

    Associate Professor of Pediatrics (Systems Medicine), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease

  • Guenther Walther

    Guenther Walther

    Professor of Statistics

    BioGuenther Walther studied mathematics, economics, and computer science at the University of Karlsruhe in Germany and received his Ph.D. in Statistics from UC Berkeley in 1994.

    His research has focused on statistical methodology for detection problems, shape-restricted inference, and mixture analysis, and on statistical problems in astrophysics and in flow cytometry.

    He received a Terman fellowship, a NSF CAREER award, and the Distinguished Teaching Award of the Dean of Humanities and Sciences at Stanford. He has served on the editorial boards of the Journal of Computational and Graphical Statistics, the Journal of the Royal Statistical Society, the Annals of Statistics, the Annals of Applied Statistics, and Statistical Science. He was program co-chair of the 2006 Annual Meeting of the Institute of Mathematical Statistics and served on the executive committee of IMS from 1998 to 2012.

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes.

  • Tom Wandless

    Tom Wandless

    Professor of Chemical and Systems Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe employ an interdisciplinary approach to studies of biological systems, combining synthetic chemistry with biochemistry, cell biology, and structural biology. We invent tools for biology and we are motivated by approaches that enable new experiments with unprecedented control. These new techniques may also provide a window into mechanisms involved in maintaining cellular homeostasis. Protein quality control is a particular interest at present.

  • Adam Wang

    Adam Wang

    Assistant Professor of Radiology and, by courtesy, of Electrical Engineering

    BioMy group develops technologies for advanced x-ray and CT imaging, including novel system design, model-based image reconstruction, spectral imaging, and radiation transport methods. I am also the Director of the Zeego Lab and the Tabletop X-Ray Lab.

    I completed my PhD at Stanford under the supervision of Dr. Norbert Pelc, developing strategies for maximizing the information content of dual energy CT and photon counting detectors. I then pursued a postdoc at Johns Hopkins with Dr. Jeff Siewerdsen, developing reconstruction and registration methods for x-ray based image-guided surgery. Prior to returning to Stanford in 2018, I was a Senior Scientist at Varian Medical Systems, developing x-ray/CT methods for image-guided radiation therapy.

  • Bo Wang

    Bo Wang

    Assistant Professor of Bioengineering and, by courtesy, of Developmental Biology

    BioWe are a discovery-driven research group working at the interface between statistical physics, developmental biology, and bioengineering. We combine quantitative organism-wide fluorescence imaging ("deep imaging"), functional genomics ("deep sequencing"), and statistical modeling to study systems biology and evolutionary cell biology of flatworms, including free living planarians and parasitic flukes. Using these animals, we seek to understand quantitatively the fundamental rules that control stem cell collective behavior to optimize tissue regeneration, remolding, and adaptation.

  • Kevin Wang, MD, PhD

    Kevin Wang, MD, PhD

    Assistant Professor of Dermatology

    Current Research and Scholarly InterestsThe Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.

  • Paul  J. Wang, MD

    Paul J. Wang, MD

    Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center and, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsDr. Wang's research centers on the development of innovative approaches to the treatment of arrhythmias, including more effective catheter ablation techniques, more reliable implantable devices, and less invasive treatments. Dr. Wang's clinical research interests include atrial fibrillation, ventricular tachycardia, syncope, and hypertrophic cardiomyopathy. Dr. Wang has active collaborations with Bioengineering, Mechanical Engineering, and Electrical Engineering Departments at Stanford.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsDr. Wang is the Director of Stanford Center for Magnetic Nanotechnology, and the Co-PI of the Stanford Center for Cancer Nanotechnology Excellence. His research interests lie in nanotechnology and information storage, including magnetic/spintronic biochips, in vitro diagnostics, cell sorting, magnetic nanoparticles, nano-patterning, spin electronic materials and sensors, as well as magnetic integrated inductors and transformers.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Robert Waymouth

    Robert Waymouth

    Robert Eckles Swain Professor in Chemistry and Professor, by courtesy, of Chemical Engineering

    BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including sustainable polymers, synthetic fuels, and bioactive molecules. In one such breakthrough, Professor Waymouth and IBM researcher Jim Hedrick opened a new path for production of environmentally sustainable plastics and improved plastics recycling, earning recognition in the 2012 Presidential Green Chemistry Award.

    Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.

    Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. The Waymouth group pioneered the development of catalysts that can access multiple kinetic states during a polymerization reaction in order to control sequence distribution. They devised a novel strategy for the synthesis of elastomeric polypropylene utilizing a metallocene catalyst whose structure was designed to interconvert between chiral and achiral coordination geometries on the timescale of the synthesis of a single polymer chain.

    In collaboration with Jim Hedrick of IBM laboratories, the Waymouth Group has developed an extensive platform of organic catalysts for the controlled ring-opening polymerization of lactones, carbonates and other heterocyclic monomers. Mechanistic studies of nucleophilic N-heterocyclic carbene catalysts revealed an unusual zwitterionic ring-opening polymerization method which enabled the synthesis of high molecular weight cyclic polymers, a novel topology for these biodegradable and biocompatible macromolecules. In collaboration with the Wender group, the Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver drugs and probes into cells. These efforts combine elements of mechanistic organic and organometallic chemistry, polymer synthesis, and homogeneous catalysis to rationally design new macromolecular structures.

  • Weinacht,Katja Gabriele

    Weinacht,Katja Gabriele

    Assistant Professor of Pediatrics (Stem Cell Transplantation and Regenerative Medicine)

    Current Research and Scholarly InterestsPediatric Hematopoietic Stem Cell Transplantation
    DiGeorge Syndrome
    Genetic Immune Diseases
    Immune Dysregulation

  • William Weis

    William Weis

    William M. Hume Professor in the School of Medicine, Professor of Structural Biology, of Molecular and Cellular Physiology and of Photon Science

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our specific areas of interest are the architecture and dynamics of intercellular adhesion junctions, the molecular basis of cell polarity, and the Wnt signaling pathway. We also have a long-standing interest in carbohydrate-based cellular recognition and adhesion.

  • Irving Weissman

    Irving Weissman

    Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology and, by courtesy, of Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Paula V. Welander

    Paula V. Welander

    Assistant Professor of Environmental Earth System Science and, by courtesy, of Biology

    Current Research and Scholarly InterestsBiosynthesis of lipid biomarkers in modern microbes; molecular geomicrobiology; microbial physiology

  • Paul Wender

    Paul Wender

    Francis W. Bergstrom Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis

  • Marius Wernig

    Marius Wernig

    Professor of Pathology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology at the Stanford University Medical Center

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics, machine vision, optics, scientific computing, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, display, wearable computing, and microscopy systems. Prior to joining Stanford in 2014, Prof. Wetzstein was a Research Scientist in the Camera Culture Group at MIT. He received a Ph.D. in Computer Science from the University of British Columbia in 2011 and graduated with Honors from the Bauhaus in Weimar, Germany before that. He is the recipient of an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), a Terman Fellowship, an Okawa Research Grant, the Electronic Imaging Scientist of the Year 2017 Award, an Alain Fournier Ph.D. Dissertation Award, and a Laval Virtual Award as well as Best Paper and Demo Awards at ICCP 2011, 2014, and 2016 and at ICIP 2016.

  • Cornelia Weyand

    Cornelia Weyand

    Professor of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsTelomere biology and genomic stress in autoimmunity and inflammation

  • Bernard Widrow

    Bernard Widrow

    Professor of Electrical Engineering, Emeritus

    Current Research and Scholarly InterestsProf. Widrow's research focuses on adaptive signal processing, adaptive control systems, adaptive neural networks, human memory, and human-like memory for computers. Applications include signal processing, prediction, noise cancelling, adaptive arrays, control systems, and pattern recognition. Recent work is about human learning at the synaptic level.

  • Leanne Williams

    Leanne Williams

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsA revolution is under way in psychiatry. We can now understand mental illness as an expression of underlying brain circuit disruptions, shaped by experience and genetics. Our lab is defining precision brain circuit types for depression, anxiety and attention deficit. We apply computational models to large amounts of brain imaging, behavior and other data. These precision brain types inform our translational intervention studies. To close the loop, field ready insights are applied in practice.

  • Nolan Williams

    Nolan Williams

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology) at the Stanford University Medical Center

    BioDr. Williams is an Assistant Professor within the Department of Psychiatry and Behavioral Sciences and the Director of the Stanford Brain Stimulation Lab. Dr. Williams has a broad background in neuropsychiatry, completing residencies in both neurology and psychiatry. In addition, he has specific training and clinical expertise in the development of brain stimulation methodologies under Mark George, MD. Themes of his work include (a) examining the use of spaced learning theory in the application of neurostimulation techniques, (b) development and mechanistic understanding of rapid-acting antidepressants, and (c) identifying objective biomarkers that predict neuromodulation responses in treatment-resistant neuropsychiatric conditions. He has published papers in high impact peer-reviewed journals including Brain, American Journal of Psychiatry, and the Proceedings of the National Academy of Science. He has also contributed to two reviews related to novel therapeutics for neuropsychiatric conditions that have been published in the Journal of Clinical Investigation and Current Opinion in Neurobiology, which are both highly cited. Results from his studies have gained widespread attention in journals such as Science and New England Journal of Medicine Journal Watch as well as in the popular press and have been featured in various news sources including Time, Smithsonian, and Newsweek. Dr. Williams received an NIH R-series grant within two years of completing his residencies as well as two NARSAD Young Investigator Awards in 2016 and 2018 along with the 2019 Gerald R. Klerman Award. He started the Stanford Brain Stimulation Lab in 2015. He has received several merit-based travel awards to attend and present at the annual meetings for American College of Neuropharmacology, Society of Biological Psychiatry, the American Academy of Neurology and the American Neuropsychiatric Association.

  • Darrell Wilson

    Darrell Wilson

    Professor of Pediatrics (Endocrinology) at the Lucile Salter Packard Children's Hospital

    Current Research and Scholarly InterestsMy research interests cover a number of areas in Pediatric Endocrinology and Diabetes. I am PI of the Stanford Center for the NIH-funded Type-1 Diabetes TrialNet group. TrialNet conducts clinical trials directed at preventing or delaying the onset of Type 1 diabetes. I am an investigator in DirecNet, another NIH-funded study group, which is devoted to evaluating glucose sensors and the role of technology on the management of diabetes.

  • Terry Winograd

    Terry Winograd

    Professor of Computer Science, Emeritus

    BioProfessor Winograd's focus is on human-computer interaction design and the design of technologies for development. He directs the teaching programs and HCI research in the Stanford Human-Computer Interaction Group, which recently celebrated it's 20th anniversary. He is also a founding faculty member of the Hasso Plattner Institute of Design at Stanford (the "d.school") and on the faculty of the Center on Democracy, Development, and the Rule of Law (CDDRL)

    Winograd was a founding member and past president of Computer Professionals for Social Responsibility. He is on a number of journal editorial boards, including Human Computer Interaction, ACM Transactions on Computer Human Interaction, and Informatica. He has advised a number of companies started by his students, including Google. In 2011 he received the ACM SIGCHI Lifetime Research Award.

  • Monte Winslow

    Monte Winslow

    Associate Professor of Genetics and of Pathology

    Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.

  • Max Wintermark

    Max Wintermark

    Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurology, of Neurosurgery and of Psychiatry and Behavioral Sciences at the Stanford University Medical Center

    Current Research and Scholarly InterestsStroke, cerebrovascular diseases, cardiovascular diseases, carotid arteries, coronary arteries
    Stroke diagnosis, stroke triage, stroke treatment
    Traumatic brain injury
    Traumatic brain injury diagnosis and prognosis
    Psychiatric disorders, including depression and post-traumatic stress disorders
    Epilepsy
    Movement disorders, including essential tremor and Parkinson’s tremor
    Brain tumors
    Image-guided clinical trials
    CT, multidetector-row CT, perfusion-CT, CT angiography
    MRI, diffusion-weighted MRI, perfusion-weighted MRI, diffusion tensor imaging, functional MRI
    Brain perfusion imaging techniques
    Functional imaging
    Post-processing techniques of medical images, signal and image processing
    3D visualization
    MR-guided focused ultrasound

  • H.-S. Philip Wong

    H.-S. Philip Wong

    Willard R. and Inez Kerr Bell Professor in the School of Engineering

    BioWong joined Stanford in 2004 after 16 years at IBM Research, with appointments as research staff member, Manager, and Senior Manager. While at IBM, he was responsible for shaping and executing IBM's strategy on nanoscale science and technology and silicon technology. His interests are in the area of nanoscale science and technology, semiconductor technology, solid-state devices, and electronic imaging.

    His present research covers a broad range of topics including carbon electronics, 2D layered materials, wireless implantable biosensors, directed self-assembly, nanoelectromechanical relays, device modeling, brain-inspired computing, and non-volatile memory devices such as phase change memory and metal oxide resistance change memory.

  • S Simon Wong

    S Simon Wong

    Professor of Electrical Engineering

    Current Research and Scholarly InterestsCurrent research focuses on

    Resistive Random Access Memory (RRAM) and Integration with CMOS

    Energy Efficient Approximate Computing for Machine Learning

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor in Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.

  • Albert Wu

    Albert Wu

    Assistant Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.

  • Hsi-Yang Wu

    Hsi-Yang Wu

    Associate Professor of Urology at the Stanford University Medical Center

    Current Research and Scholarly InterestsI am interested in how the brain matures to control the bladder and external sphincter to achieve urinary continence. Using functional MRI of the brain, we are investigating if certain patterns of activity will predict which children will respond to therapy for incontinence.

  • Joseph  C. Wu

    Joseph C. Wu

    Director, Stanford Cardiovascular Institute, Simon H. Stertzer, MD, Professor and Professor of Radiology

    Current Research and Scholarly InterestsDrug discovery, drug screening, and disease modeling using biobank of cardiac iPSC lines.

  • Joy Wu

    Joy Wu

    Assistant Professor of Medicine (Endocrinology)

    Current Research and Scholarly InterestsMy laboratory focuses on the pathways that regulate the differentiation of mesenchymal stem cells into the osteoblast and adipocyte lineages. We are also studying the role of osteoblasts in the hematopoietic and cancer niches in the bone marrow microenvironment.

  • Sean M. Wu

    Sean M. Wu

    Associate Professor of Medicine (Cardiovascular Medicine) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMy lab seeks to identify mechanisms regulating cardiac lineage commitment during embryonic development and the biology of cardiac progenitor cells in development and disease. We believe that by understanding the transcriptional and epigenetic basis of cardiomyocyte growth and differentiation, we can identify the most effective ways to repair diseased adult hearts. We employ mouse and human embryonic and induced pluripotent stem cells as well as rodents as our in vivo models for investigation.

  • Courtney Wusthoff, MD

    Courtney Wusthoff, MD

    Associate Professor of Neurology and, by courtesy, of Pediatrics (Neonatology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy projects focus on clinical research in newborns with, or at risk, for brain injury. I use EEG in at-risk neonates to better understand the underlying pathophysiology of risk factors that may lead to worse outcomes. I am particularly interested in neonatal seizures and how they may exacerbate perinatal brain injury with a goal to identify treatments that might protect the vulnerable brain. I am also interested in EEG in other pediatric populations, as well as medical ethics and global health.

  • Joanna Wysocka

    Joanna Wysocka

    Lorry Lokey Professor and Professor of Developmental Biology

    Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.

  • Tony Wyss-Coray, PhD

    Tony Wyss-Coray, PhD

    D. H. Chen Professor II

    Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.

  • Yan Xia

    Yan Xia

    Assistant Professor of Chemistry

    Current Research and Scholarly InterestsOrganic Chemistry, Polymer Chemistry, Organic Optoelectronic Materials, Microporous Polymers, Responsive Polymers, Polymer Networks, Self-Assembly

  • Lei Xing

    Lei Xing

    Jacob Haimson Professor and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interestsartificial intelligence in medicine, Image-guided intervention, molecular imaging, biologically conformable radiation threapy (BCRT), treatment plan optimization, optimization, application of molecular imaging to radiation oncology.

  • Daniel Yamins

    Daniel Yamins

    Assistant Professor of Psychology and of Computer Science

    Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:

    H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.

    H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.

    We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis.

  • Fan Yang

    Fan Yang

    Associate Professor of Orthopaedic Surgery and of Bioengineering

    Current Research and Scholarly InterestsOur research seeks to understand how microenvironmental cues regulate stem cell fate, and to develop novel biomaterials and stem cell-based therapeutics for tissue engineering and regenerative medicine. Our work spans from fundamental science, technology development, to translational research.We are particularly interested in developing better therapies for treating musculoskeletal diseases, cardiovascular diseases and cancer.

  • Phillip C. Yang, MD

    Phillip C. Yang, MD

    Associate Professor of Medicine (Cardiovascular Medicine) at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Yang is a physician-scientist whose research interest focuses on clinical translation of the fundamental molecular and cellular processes of myocardial restoration. His research employs novel in vivo multi-modality molecular and cellular imaging technology to translate the basic innovation in cardiovascular pluripotent stem cell biologics. Dr. Yang is currently a PI on the NIH/NHLBI funded CCTRN UM1 grant, which is designed to conduct multi-center clinical trial on novel biological therapy.

  • Samuel Yang, MD, FACEP

    Samuel Yang, MD, FACEP

    Associate Professor of Emergency Medicine at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Yang's research is focused on bridging the translational gap at the interface of molecular biology, genome science, engineering, and acute care medicine. The investigative interest of the Yang lab falls within the general theme of developing integrative systems-level approaches for precision diagnostics, as well as data driven knowledge discoveries, to improve the health outcome and our understanding of complex critical illnesses. Using sepsis as the disease model with complex host-pathogen dynamics, the goals of the Yang lab are divided into 2 areas:

    1) Developing high-content, near-patient, diagnostic system for rapid broad pathogen detection and characterization.

    2) Integrating multi-omics molecular and phenotypic data layers with novel computational approaches into AI-assisted diagnostics and predictive analytics for sepsis.

  • Yanmin Yang

    Yanmin Yang

    Associate Professor of Neurology

    Current Research and Scholarly InterestsElucidate biological functions of cytoskeletal associated proteins in neurons. Define the cellular and molecular mechanisms underlying neurodegeneration in null mice.

  • Yunzhi Peter Yang

    Yunzhi Peter Yang

    Associate Professor of Orthopaedic Surgery and, by courtesy, of Materials Science and Engineering and of Bioengineering

    Current Research and Scholarly InterestsYang’ lab's research interests are in the areas of bio-inspired biomaterials, medical devices, and 3D printing approaches for re-creating a suitable microenvironment for cell growth and tissue regeneration for musculoskeletal disease diagnosis and treatment, including multiple tissue healing such as rotator cuff injury, orthopedic diseases such as osteoporosis and osteonecrosis, and orthopedic traumas such as massive bone and muscle injuries.

  • Jiangbin Ye

    Jiangbin Ye

    Assistant Professor of Radiation Oncology

    Current Research and Scholarly InterestsOne hallmark of cancer is that malignant cells modulate metabolic pathways to promote cancer progression. My professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of cancer cells in response to microenvironmental stresses such as hypoxia and nutrient deprivation, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment.

  • Ellen Yeh

    Ellen Yeh

    Assistant Professor of Biochemistry, of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsThe chemistry and biology of the unusual plastid organelle, the apicoplast, in malaria parasites

  • David C. Yeomans

    David C. Yeomans

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsPhysiology of different pain types; Biomarkers of pain and inflammation; Gene Therapy for Pain

  • Paul Yock, MD

    Paul Yock, MD

    The Martha Meier Weiland Professor in the School of Medicine, Professor of Bioengineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsHealth technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.

  • Jong H. Yoon

    Jong H. Yoon

    Associate Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsMy research seeks to discover the brain mechanisms responsible for schizophrenia and to translate this knowledge into the clinic to improve how we diagnose and treat this condition. Towards these ends, our group has been developing cutting-edge neuroimaging tools to identify neurobiological abnormalities and test novel systems-level disease models of psychosis and schizophrenia directly in individuals with these conditions.

    We have been particularly interested in the role of neocortical-basal ganglia circuit dysfunction. A working hypothesis is that some of the core symptoms of schizophrenia are attributable to impairments in neocortical function that results in disconnectivity with components of the basal ganglia and dysregulation of their activity. The Yoon Lab has developed new high-resolution functional magnetic resonance imaging methods to more precisely measure the function of basal ganglia components, which given their small size and location deep within the brain has been challenging. This includes ways to measure the activity of nuclei that store and control the release of dopamine throughout the brain, a neurochemical that is one of the most important factors in the production of psychosis in schizophrenia and other neuropsychiatric conditions.

  • Greg Zaharchuk

    Greg Zaharchuk

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsImproving medical image quality using deep learning artificial intelligence
    Imaging of cerebral hemodynamics with MRI and CT
    Noninvasive oxygenation measurement with MRI
    Clinical imaging of cerebrovascular disease
    Imaging of cervical artery dissection
    MR/PET in Neuroradiology
    Resting-state fMRI for perfusion imaging and stroke

  • Jamil Zaki

    Jamil Zaki

    Associate Professor of Psychology

    Current Research and Scholarly InterestsMy research focuses on the cognitive and neural bases of social behavior, and in particular on how people respond to each other's emotions (empathy), why they conform to each other (social influence), and why they choose to help each other (prosociality).

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Christopher K. Zarins

    Christopher K. Zarins

    Walter Clifford Chidester and Elsa Rooney Chidester Professor of Surgery, Emeritus

    Current Research and Scholarly InterestsHemodynamic factors in atherosclerosis, pathogenesis of, aortic aneurysms, carotid plaque localization and complication, anastomotic intimal hyperplasia, vascular biology of artery wall, computational fluid dynamics as applied to blood flow and vascular disease.

  • James L. Zehnder, M.D.

    James L. Zehnder, M.D.

    Professor of Pathology (Research) and of Medicine (Hematology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsOur laboratory focuses on translational research in 2 main areas - genomic approaches to diagnosis and minimal residual disease testing for patients with cancer, and molecular basis of disorders of thrombosis and hemostasis. My clinical focus is in molecular pathology, diagnosis and treatment of disorders of hemostasis and thrombosis and general hematology.

  • Michael Zeineh

    Michael Zeineh

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) at the Stanford University Medical Center

    BioDr. Michael Zeineh received a B.S. in Biology at Caltech in 1995 and obtained his M.D.-Ph.D. from UCLA in 2003. After internship also at UCLA, he went on to radiology residency and neuroradiology fellowship both at Stanford. He has been an assistant professor of radiology since 2010. Combining clinical acumen in neuroradiology with advanced MRI acquisition and image processing as well as histologic validation, Dr. Zeineh hopes to advance the care of patients with neurodegenerative disorders. In particular, he is interested in Alzheimer's disease, sports-related mild traumatic brain injury, and chronic fatigue syndrome. Additionally, he is specifically interested and has over 20 years of experience studying hippocampal anatomy and pathology.

  • Jamie Zeitzer

    Jamie Zeitzer

    Associate Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsDr. Zeitzer is a circadian physiologist specializing in the understanding of the impact of light on circadian rhythms and other aspects of non-image forming light perception.
    He examines the manner in which humans respond to light and ways to manipulate this responsiveness, with direct application to jet lag, shift work, and altered sleep timing in teens. Dr. Zeitzer has also pioneered the use of actigraphy in the determination of epiphenomenal markers of psychiatric disorders.

  • Heng Zhao

    Heng Zhao

    Professor (Research) of Neurosurgery

    Current Research and Scholarly InterestsMy lab is focused on developing novel therapeutic methods against stroke using rodent models. We study protective effect of postconditioning, preconditioning and mild hypothermia. The rationale for studying three means of neuroprotection is that we may discover mechanisms that these treatments have in common. Conversely, if they have differing mechanisms, we will be able to offer more than one treatment for stroke and increase a patient’s chance for recovery.

  • Xiaolin Zheng

    Xiaolin Zheng

    Associate Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioProfessor Zheng received her Ph.D. in Mechanical & Aerospace Engineering from Princeton University (2006), B.S. in Thermal Engineering from Tsinghua University (2000). Prior to joining Stanford in 2007, Professor Zheng did her postdoctoral work in the Department of Chemistry and Chemical Biology at Harvard University. Professor Zheng is a member of MRS, ACS and combustion institute. Professor Zheng received the TR35 Award from the MIT Technology Review (2013), one of the 100 Leading Global Thinkers by the Foreign Policy Magazine (2013), 3M Nontenured Faculty Grant Award (2013), the Presidential Early Career Award (PECASE) from the white house (2009), Young Investigator Awards from the ONR (2008), DARPA (2008), Terman Fellowship from Stanford (2007), and Bernard Lewis Fellowship from the Combustion Institute (2004).

  • Roseanna N. Zia

    Roseanna N. Zia

    Assistant Professor of Chemical Engineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsThe Zia Group seeks answers to 3 Grand Challenge questions utilizing theory and computational analysis of complex fluids:
    1. Understand the mechanical nature of the origin of life.
    2. Elucidate the mechanics of the (colloidal) glass transition and kinetic arrest.
    3. Develop generalized non-equilibrium fluctuation-dissipation theory for soft matter.
    Though seemingly disparate avenues of inquiry, they are deeply and surprisingly connected by fluid and suspension mechanics.

  • J. Bradley Zuchero

    J. Bradley Zuchero

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsGlia are a frontier of neuroscience, and overwhelming evidence from the last decade shows that they are essential regulators of all aspects of the nervous system. The Zuchero Lab aims to uncover how glial cells regulate neural development and how their dysfunction contributes to diseases like multiple sclerosis (MS) and in injuries like stroke.

    Although glia represent more than half of the cells in the human brain, fundamental questions remain to be answered. How do glia develop their highly specialized morphologies and interact with neurons to powerfully control form and function of the nervous system? How is this disrupted in neurodegenerative diseases and after injury? By bringing cutting-edge cell biology techniques to the study of glia, we aim to uncover how glia help sculpt and regulate the nervous system and test their potential as novel, untapped therapeutic targets for disease and injury.

    We are particularly interested in myelin, the insulating sheath around neuronal axons that is lost in diseases like MS. How do oligodendrocytes- the glial cell that produces myelin in the central nervous system- form and remodel myelin, and why do they fail to regenerate myelin in disease? Our current projects aim to use cell biology and neuroscience approaches to answer these fundamental questions. Ultimately we hope our work will lead to much-needed therapies to promote remyelination in patients.