Wu Tsai Neurosciences Institute


Showing 101-200 of 443 Results

  • Laramie Duncan

    Laramie Duncan

    Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsWe study genetic and environmental effects on mental health. Much of our work is computational and it relies upon genetic data, collected from millions of individuals, from around the world. We use genetic approaches because the overall goal of the lab is to discover fundamental information about psychiatric disorders, and ultimately to build more rational approaches to classification, prevention, and treatment.

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.

  • Shirit Einav

    Shirit Einav

    Associate Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, encephalitic alphaviruses, and Ebola, and means to predict disease progression.

  • Abbas El Gamal

    Abbas El Gamal

    Hitachi America Professor in the School of Engineering

    BioAbbas El Gamal is the Hitachi America Professor in the School of Engineering and Professor in the Department of Electrical Engineering at Stanford University. He received his B.Sc. Honors degree from Cairo University in 1972, and his M.S. in Statistics and Ph.D. in Electrical Engineering both from Stanford University in 1977 and 1978, respectively. From 1978 to 1980, he was an Assistant Professor of Electrical Engineering at USC. From 2003 to 2012, he was the Director of the Information Systems Laboratory at Stanford University. From 2012 to 2017 he was Chair of the Department of Electrical Engineering at Stanford University. His research contributions have been in network information theory, FPGAs, and digital imaging devices and systems. He has authored or coauthored over 230 papers and holds 35 patents in these areas. He is coauthor of the book Network Information Theory (Cambridge Press 2011). He has received several honors and awards for his research contributions, including the 2016 Richard W. Hamming Medal, the 2012 Claude E. Shannon Award, and the 2004 INFOCOM Paper Award. He is a member of the U.S. National Academy of Engineering and a Fellow of the IEEE. He has co-founded and served on the board of directors and advisory boards of several semiconductor and biotechnology startup companies.

  • Edgar Engleman

    Edgar Engleman

    Professor of Pathology and of Medicine (Immunology and Rheumatology)

    Current Research and Scholarly InterestsDendritic cells, macrophages, NK cells and T cells; functional proteins and genes; immunotherapeutic approaches to cancer, autoimmune disease, neurodegenerative disease and metabolic disease.

  • Amit Etkin, MD, PhD

    Amit Etkin, MD, PhD

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)
    On Leave from 11/01/2020 To 10/31/2021

    Current Research and Scholarly InterestsThe overarching aim of the Etkin lab is to understand the neural basis of emotional disorders and their treatment, and to leverage this knowledge to develop novel treatment interventions. Our work is organized around the study of the neuroscience of emotion and cognitive regulation, as well as neural circuit function, in healthy subjects and individuals with a range of psychiatric disorders.

  • C. Garrison Fathman

    C. Garrison Fathman

    Professor of Medicine (Immunology and Rheumatology), Emeritus

    Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.

  • Heidi M. Feldman

    Heidi M. Feldman

    Ballinger-Swindells Endowed Professor in Developmental and Behavioral Pediatrics

    Current Research and Scholarly InterestsMy current research program focuses on the following questions: (1) Why do children born preterm experience adverse outcomes in cognition, learning, language, and reading? (2) How do interventions to improve reading and other skills affect skill development and structural properties of the brain in children born preterm and at term? (3) How can we improve health care delivery for all children with disabilities?

  • Marcus Feldman

    Marcus Feldman

    Burnet C. and Mildred Finley Wohlford Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China

  • Russell D. Fernald

    Russell D. Fernald

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)

  • Juan Carlos Fernandez-Miranda

    Juan Carlos Fernandez-Miranda

    Professor of Neurosurgery and, by courtesy, of Otolaryngology - Head & Neck Surgery (OHNS) at the Stanford University Medical Center

    BioDr. Juan Fernandez-Miranda is Professor of Neurosurgery and Surgical Director of the Stanford Brain Tumor, Skull Base, and Pituitary Centers. He is internationally renowned for his expertise in minimally invasive brain surgery, endoscopic skull base and pituitary surgery, open skull base surgery, and complex brain tumor surgery. He has performed over a thousand endoscopic endonasal operations for pituitary tumors and other skull base lesions. He is highly regarded for his innovative contributions to the development and refinement of endoscopic endonasal skull base surgery, for his ability to select the most effective and less invasive approach to each individual patient, and for his precise knowledge of the intricate anatomy of the white matter tracts required to maximize resection and minimize morbidity on high and low grade glioma patients.

    Dr. Fernandez-Miranda completed neurosurgery residency at La Paz University Hospital in Madrid, Spain. Upon completion of his residency, he was awarded the Sanitas Prize to the best medical postgraduate trainee in the country. From 2005 to 2007, he underwent fellowship training in microsurgical neuroanatomy at the University of Florida under legendary neurosurgeon Albert L. Rhoton, Jr. From 2007 to 2010 he continued subspecialty clinical training in cerebrovascular surgery at the University of Virginia, and endoscopic endonasal and open skull base surgery at University of Pittsburgh Medical Center (UPMC). During his 10-year tenure at UPMC, he pioneered endoscopic endonasal approaches to highly complex pituitary and skull base tumors, developed a world-class complex brain surgery program, and led a premier training and research program on surgical neuroanatomy and skull base surgery.

    In 2018, he was recruited to bring to Stanford his unique technical expertise and to collaborate with world-renowned Stanford colleagues across multiple disciplines to establish the preeminent center for comprehensive treatment of complex lesions in the brain, skull base, and pituitary regions. His top priority is to provide gentle, accurate, and safe surgery, in a team-based and compassionate approach to patient care.

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

  • Andrew Fire

    Andrew Fire

    George D. Smith Professor in Molecular and Genetic Medicine and Professor of Pathology and of Genetics

    Current Research and Scholarly InterestsWe study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".

  • Daniel Fisher

    Daniel Fisher

    David Starr Jordan Professor

    Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer

  • Paul Graham Fisher, MD

    Paul Graham Fisher, MD

    Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health at SUMC
    On Partial Leave from 09/01/2020 To 12/31/2020

    Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies, and childhood headaches.

  • Robert Fisher, MD, PhD

    Robert Fisher, MD, PhD

    The Maslah Saul Professor in the Department of Neurology and Professor, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.

  • Pamela Flood

    Pamela Flood

    Professor of Anesthesiology, Perioperative and Pain Medicine (OB) at the Stanford University Medical Center

    BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.

  • Polly Fordyce

    Polly Fordyce

    Assistant Professor of Bioengineering and of Genetics

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Michael Frank

    Michael Frank

    David and Lucile Packard Foundation Professor in Human Biology and Associate Professor, by courtesy, of Linguistics

    Current Research and Scholarly InterestsHow do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.

  • Shai Friedland

    Shai Friedland

    Professor of Medicine (Gastroenterology and Hepatology) at the Stanford University Medical Center

    Current Research and Scholarly Interests1. Gastrointestinal Endoscopy- Techniques and Outcomes
    2. Noninvasive colorectal cancer screening
    3. Medical device development in gastroenterology

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Takako Fujioka

    Takako Fujioka

    Associate Professor of Music

    BioResearch topics include neural oscillations for auditory perception, auditory-motor coupling, brain plasticity in development and aging, and recovery from stroke with music-supported therapy.

    Her post-doctoral and research-associate work at Rotman Research Institute in Toronto was supported by awards from the Canadian Institutes of Health Research. Her research continues to explore the biological nature of human musical ability by examining brain activities with non-invasive human neurophysiological measures such as magnetoencephalography (MEG) and electroencephalography (EEG).

  • Sanjiv Sam Gambhir, MD, PhD

    Sanjiv Sam Gambhir, MD, PhD

    Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.

  • Xiaojing Gao

    Xiaojing Gao

    Assistant Professor of Chemical Engineering

    BioHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Justin Gardner

    Justin Gardner

    Assistant Professor of Psychology

    Current Research and Scholarly InterestsHow does neural activity in the human cortex create our sense of visual perception? We use a combination of functional magnetic resonance imaging, computational modeling and analysis, and psychophysical measurements to link human perception to cortical brain activity.

  • Joseph Garner

    Joseph Garner

    Associate Professor of Comparative Medicine and, by courtesy, of Psychiatry and Behavioral Sciences at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe medical research community has long recognized that “good well-being is good science”. The lab uses an integrated interdisciplinary approach to explore this interface, while providing tangible deliverables for the well-being of human patients and research animals.

  • Andrew Gentles

    Andrew Gentles

    Assistant Professor (Research) of Medicine (Biomedical Informatics) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsComputational systems biology of human disease. Particular focus on integration of high-throughput datasets with each other, and with phenotypic information and clinical outcomes.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Assistant Professor of Neurology and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Olivier Gevaert

    Olivier Gevaert

    Assistant Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Erin Gibson

    Erin Gibson

    Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.

  • Rona Giffard

    Rona Giffard

    Professor of Anesthesiology, Perioperative and Pain Medicine, Emerita

    Current Research and Scholarly InterestsAstrocytes, microglia and neurons interact, and have unique vulnerabilities to injury based on their patterns of gene expression and their functional roles. We focus on the cellular and molecular basis of brain cell injury in stroke. We study the effects of altering miRNA expression, altering levels of heat shock and cell death regulatory proteins. Our goal is to improve outcome by improving mitochondrial function and brain cell survival, and reducing oxidative stress and inflammation.

  • William Gilly

    William Gilly

    Professor of Biology

    Current Research and Scholarly InterestsMy work has contributed to understanding electrical excitability in nerve & muscle in organisms ranging from brittle-stars to mammals. Current research addresses behavior, physiology and ecology of squid through field and lab approaches. Electronic tagging plus in situ video, acoustic and oceanographic methods are used to study behaviors and life history in the field. Lab work focuses on control of chromogenic behavior by the chromatophore network and of locomotion by the giant axon system.

  • Lisa Giocomo

    Lisa Giocomo

    Associate Professor of Neurobiology

    Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.

  • Aaron D. Gitler

    Aaron D. Gitler

    The Stanford Medicine Basic Science Professor

    Current Research and Scholarly InterestsWe investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.

  • Gary Glover

    Gary Glover

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering

    Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.

  • Garry Gold

    Garry Gold

    Professor of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly InterestsMy primary focus is application of new MR imaging technology to musculoskeletal problems. Current projects include: Rapid MRI for Osteoarthritis, Weight-bearing cartilage imaging with MRI, and MRI-based models of muscle. We are studying the application of new MR imaging techniques such as rapid imaging, real-time imaging, and short echo time imaging to learn more about biomechanics and pathology of bones and joints. I am also interested in functional imaging approaches using PET-MRI.

  • Jeffrey Goldberg, MD, PhD

    Jeffrey Goldberg, MD, PhD

    Blumenkranz Smead Professor

    Current Research and Scholarly InterestsLab research on molecular mechanisms of survival and regeneration in the visual system; retinal development and stem cell biology; nanoparticles and tissue engineering. Clinical trials in imaging, biomarker development, and neuroprotection and vision restoration in glaucoma and other neurodegenerative diseases.

  • Andrea Goldsmith

    Andrea Goldsmith

    Stephen Harris Professor in the School of Engineering, Emerita

    BioAndrea Goldsmith is the Stephen Harris professor in the School of Engineering and professor of Electrical Engineering at Stanford University. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and neuroscience. She co-founded and served as Chief Technical Officer and Board member of Plume WiFi and of Quantenna (QTNA), and she currently serves on the Board of Directors for Medtronic (MDT) and Crown Castle Inc. (CCI). She has also been a member or chair of the technical advisory boards for Quantenna (QTNA), Sequans (SQNS), Interdigital (IDCC) and Cohere. Goldsmith has launched and led several multi-university research projects including DARPA’s ITMANET program, and she is currently a Principle Investigator in the NSF Center on the Science of Information. Prior to Stanford she held positions at Caltech, Maxim Technologies, Memorylink Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a member of the National Academy of Engineering and the American Academy of Arts and Sciences, a Fellow of the IEEE and of Stanford, and has received several awards for her work, including the IEEE Eric E. Sumner Technical Field Award in Communications Technology, the ComSoc Edwin H. Armstrong Achievement Award as well as Technical Achievement Awards in Communications Theory and in Wireless Communications, the National Academy of Engineering Gilbreth Lecture Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications'' and “Principles of Cognitive Radio,” all published by Cambridge University Press, as well as an inventor on 29 patents. She has served in various leadership roles in the IEEE and in industrial groups aimed at diversifying STEM fields, and is currently the founding chair of the IEEE Committee on Diversity, Inclusion, and Professional Ethics. At Stanford she has served as chair and a member of the Faculty Senate and on the Planning and Policy Board, Committee on Research, Commissions on Graduate Education and on Undergraduate Education, Task Force on Women and Leadership, and the Faculty Women's Forum Steering Committee. She currently serves on Stanford's Budget Group, Advisory Board, and in the Faculty Senate.

  • Natalia Gomez-Ospina

    Natalia Gomez-Ospina

    Assistant Professor of Pediatrics (Genetics) and of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.

    1) Lysosomal storage diseases:
    Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease


    2) Point of care ammonia testing
    She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.

    3) Gene discovery
    Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.


    For more information go to our website:

    https://www.gomezospina.com/

  • Miriam B. Goodman

    Miriam B. Goodman

    Mrs. George A. Winzer Professor of Medicine

    Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and temperature in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We also collaborate with Pruitt's group in Mechanical Engineering to develop and fabricate novel devices for the study of sensory transduction.

  • Deborah M Gordon

    Deborah M Gordon

    Professor of Biology

    Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.

  • Ian Gotlib

    Ian Gotlib

    David Starr Jordan Professor
    On Leave from 10/01/2020 To 12/31/2020

    Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.

  • Gerald Grant, MD, FACS

    Gerald Grant, MD, FACS

    Endowed Professor in Pediatric Neurosurgery and Professor, by courtesy, of Neurology at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Grant directs a Blood-brain Barrier Translational Laboratory focusing on enhancing drug delivery to brain tumors in children.

  • Henry T. (Hank) Greely

    Henry T. (Hank) Greely

    Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics

    Current Research and Scholarly InterestsSince 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.

  • William Greenleaf

    William Greenleaf

    Associate Professor of Genetics and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsOur lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.

  • Michael Greicius, MD, MPH

    Michael Greicius, MD, MPH

    Associate Professor of Neurology and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsAs the Medical Director of the Stanford Center for Memory Disorders and Principal Investigator of the Stanford Extreme Phenotypes in Alzheimer's Disease (StEP AD) Cohort, Dr. Greicius' research focuses on elucidating the neurobiologic underpinnings of AD. His lab combines cutting edge brain imaging, "deep" phenotyping, and whole-genome sequencing of human subjects to identify novel pathways involved in AD pathogenesis. The goal of his work is to develop effective treatment for AD patients.

  • Kalanit Grill-Spector

    Kalanit Grill-Spector

    Professor of Psychology

    Current Research and Scholarly InterestsFor humans, recognition is a natural, effortless skill that occurs within a few hundreds of milliseconds, yet it is one of the least understood aspects of visual perception. Our research utilizes functional imaging (fMRI),diffusion weighted imaging (DWI), computational techniques, and behavioral methods to investigate the neural mechanisms underlying visual recognition in humans. We also examine the development of these mechanisms from childhood to adulthood as well as between populations.

  • James Gross

    James Gross

    Professor of Psychology

    Current Research and Scholarly InterestsI am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.

  • Geoffrey Gurtner

    Geoffrey Gurtner

    Johnson & Johnson Professor of Surgery and Professor, by courtesy, of Bioengineering and of Materials Science and Engineering

    Current Research and Scholarly InterestsGeoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.

  • Hyowon Gweon

    Hyowon Gweon

    Associate Professor of Psychology

    BioI am broadly interested in the human ability to reason about others, learn from others, and inform others in communicative contexts. How do we construct rich, abstract theories about how the world works from our everyday experiences that often involve other people, and how do we communicate what we know to others? My research brings together various approaches -- primarily developmental, computational, and neuroimaging methods -- aiming to provide a unified description of the cognitive and neural mechanisms that underlie the representations and inferential processes that allow us to learn about the world, and to communicate what we know.

  • Nicholas Haber

    Nicholas Haber

    Assistant Professor of Education and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsI use AI models of of exploratory and social learning in order to better understand early human learning and development, and conversely, I use our understanding of early human learning to make robust AI models that learn in exploratory and social ways. Based on this, I develop AI-powered learning tools for children, geared in particular towards the education of those with developmental issues such as the Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder, in the mold of my work on the Autism Glass Project. My formal graduate training in pure mathematics involved extending partial differential equation theory in cases involving the propagation of waves through complex media such as the space around a black hole. Since then, I have transitioned to the use of machine learning in developing both learning tools for children with developmental disorders and AI and cognitive models of learning.

  • Aida Habtezion MD MSc.

    Aida Habtezion MD MSc.

    Associate Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly InterestsLeukocyte recruitment & immune responses in diseases affecting digestive organs

  • Scott S. Hall, Ph.D

    Scott S. Hall, Ph.D

    Professor of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Sciences) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy primary area of scholarly and clinical interest is the pathogenesis of problem behaviors shown by individuals diagnosed with intellectual and developmental disabilities (IDD), particularly those with neurogenetic forms of IDD, such as fragile X syndrome, Cornelia de Lange syndrome and Prader-Willi syndrome. My work aims to both advance understanding of these disorders and to identify effective new treatment approaches for pediatric and adult patient populations by state-of-the-art methodologies, such as brain imaging, eye tracking and functional analysis to determine how environmental and biological factors affect the development of aberrant behaviors in these syndromes. The end goal of my research is to create patient-specific methods for treating the symptoms of these disorders.

  • Joachim Hallmayer

    Joachim Hallmayer

    Professor of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsPrincipal Investigator
    Infrastructure to facilitate discovery of autism genes
    The purpose of this project is to facilitate the discovery of the genes that contribute autism by maintaining an infrastructure which research groups studying the genetics of autism can work collaboratively. This will be
    accomplished through workshops, a Virtual Private Network, and access to a database that includes phenotype and genotype data from all participating groups.

    Principal Investigator
    A California Population-Based Twin Study of Autism
    This will address several fundamental questions: (1) What is the heritability of autism (2) What is the contribution of genetic factors to variation in symptom dimensions? (3) Is there a continuum between the quantitative neurocognitive traits and clinical disorder? (4) What proportion of the variance in the neurocognitive traits is accounted for by genetic and non-genetic factors?

    Co-Investigator
    Center for Integrating Ethics in Genetics Research(Cho)
    The goal of this project is to serve as a center of excellence in neurogenetics research, to develop a national model for bench, to bedside research ethics consultation, and to provide training opportunity in biomedical ethics.

    Co-Investigator
    Gene, Brain and Behavior in Turner Syndrome(Reiss)
    The primary objective of this project is to use advanced, multi-modal magnetic resonance imaging (MRI) techniques, analyses of X chromosome parent-of-origin and cognitive-behavioral assessment to elucidate the effects of monosomy and X-linked imprinting on neurodevelopment and neural function in a large cohort of young girls with Turner syndrome, pre-estrogen replacement.

    Project Director
    Project F: Genomic Analysis in narcolepsy cataplexy
    The goal of the project is to locate genes outside the HLA region that influence susceptibility to narcolepsy. In order to localize these genes we will carry out a linkage and association study in the most extensive world-wide collection of DNAs from well-characterized patients with narcolepsy and their families.

  • Casey H. Halpern, MD

    Casey H. Halpern, MD

    Associate Professor of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsWe are currently investigating the effects of deep brain stimulation in obesity using mouse models of human behavior. Many obese individuals exhibit behavioral disinhibition, a clinical feature of many neurologic and psychiatric conditions. We are dissecting the mesocorticolimbic circuit with novel techniques including optogenetics.

  • May Han, MD

    May Han, MD

    Associate Professor of Neurology at the Stanford University Medical Center

    Current Research and Scholarly InterestsMultiple sclerosis
    Neuromyelitis optica
    Autoimmune CNS disorders

  • Antonio Hardan, M.D.

    Antonio Hardan, M.D.

    Professor of Psychiatry and Behavioral Sciences at the Stanford University Medical Center

    Current Research and Scholarly InterestsThe neurobiology of autism
    Neuroimaging in individuals with autism
    Psychopharmacological treatment of children and adults with autism and/or developmental disorders
    The neurobiology and innovative interventions of several neurogenic disorders including DiGeorge Syndrome (Velocardiofacial syndrome; 22q11.2 mutations), PTEN mutations, and Phelan McDermid Syndrome (22q13 mutations).

  • Keren Haroush

    Keren Haroush

    Assistant Professor of Neurobiology

    Current Research and Scholarly InterestsOur laboratory studies the mechanisms by which highly complex behaviors are mediated at the neuronal level, mainly focusing on the example of dynamic social interactions and the neural circuits that drive them. From dyadic interactions to group dynamics and collective decision making, the lab seeks a mechanistic understanding for the fundamental building blocks of societies, such as cooperation, empathy, fairness and reciprocity.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Trevor Hastie

    Trevor Hastie

    John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences

    Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.

  • Zihuai He

    Zihuai He

    Assistant Professor (Research) of Neurology and of Medicine (BMIR)

    BioDr. He received his PhD from the University of Michigan in 2016. Following a postdoctoral training in biostatistics at Columbia University, he joined Stanford University as an assistant professor of neurology and of medicine in 2018. His research is concentrated in the area of statistical genetics and integrative analysis of omics data, with the aim of developing novel statistical and computational methodologies for the identification and interpretation of complex biological pathways involved in human diseases, particularly neurological disorders. His methodology interest includes high-dimensional data analysis, correlated (longitudinal, familial) data analysis and machine learning algorithms.

  • Boris Heifets

    Boris Heifets

    Assistant Professor of Anesthesiology, Perioperative and Pain Medicine (Adult MSD) at the Stanford University Medical Center

    Current Research and Scholarly InterestsHarnessing synaptic plasticity to treat neuropsychiatric disease

  • Sarah Heilshorn

    Sarah Heilshorn

    Professor of Materials Science and Engineering and, by courtesy, of Bioengineering and of Chemical Engineering

    Current Research and Scholarly InterestsProtein engineering
    Tissue engineering
    Regenerative medicine
    Biomaterials

  • Jeremy J. Heit, MD, PhD

    Jeremy J. Heit, MD, PhD

    Assistant Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsOur research seeks to advance our understanding of cerebrovascular disease and to develop new minimally invasive treatments for these diseases. We study ischemic and hemorrhagic stroke, cerebral aneurysms, delayed cerebral ischemia, cerebral arteriovenous malformations (AVMs), dural arteriovenous fistulae, and other vascular diseases of the brain. We use state-of-the-art neuroimaging techniques to non-invasively study these diseases, and we are developing future endovascular technologies to advance neurointerventional surgery.

    www.heitlab.com

  • H. Craig Heller

    H. Craig Heller

    Lorry I. Lokey/Business Wire Professor

    Current Research and Scholarly InterestsNeurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.

  • Stefan Heller

    Stefan Heller

    Edward C. and Amy H. Sewall Professor in the School of Medicine

    Current Research and Scholarly InterestsOur research focuses on the inner ear, from its earliest manifestation as one of the cranial placodes until it has developed into a mature and functioning organ. We are interested how the sensory epithelia of the inner ear that harbor the sensory hair cells develop, how the cells mature, and how these epithelia respond to toxic insults. The overarching goal of this research is to find was to regenerate lost sensory hair cells in mammals.

  • Jaimie Henderson, MD

    Jaimie Henderson, MD

    John and Jene Blume - Robert and Ruth Halperin Professor, Professor of Neurosurgery and, by courtesy, of Neurology at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy research interests encompass several areas of stereotactic and functional neurosurgery, including frameless stereotactic approaches for therapy delivery to deep brain nuclei; cortical physiology and its relationship to normal and pathological movement; brain-computer interfaces; and the development of novel neuromodulatory techniques for the treatment of movement disorders, epilepsy, pain, and other neurological diseases.

  • Victor W. Henderson, MD, MS

    Victor W. Henderson, MD, MS

    Professor of Epidemiology and Population Health and of Neurology

    Current Research and Scholarly InterestsResearch interests:
    (1) Risk factors for age-associated cognitive decline and for dementia.
    (2) Therapeutic strategies to improve cognitive function in aging and in dementia.
    (3) Brain-–behavior relations as they pertain to human cognition.

  • Tina Hernandez-Boussard

    Tina Hernandez-Boussard

    Associate Professor of Medicine (Biomedical Informatics), of Biomedical Data Science, of Surgery and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMy background and expertise is in the field of computational biology, with concentration in health services research. A key focus of my research is to apply novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. My research involves managing and manipulating big data, which range from administrative claims data to electronic health records, and applying novel biostatistical techniques to innovatively assess clinical and policy related research questions at the population level. This research enables us to create formal, statistically rigid, evaluations of healthcare data using unique combinations of large datasets.

  • Lambertus Hesselink

    Lambertus Hesselink

    Professor of Electrical Engineering and, by courtesy, of Applied Physics

    BioHesselink's research encompasses nano-photonics, ultra high density optical data storage, nonlinear optics, optical super-resolution, materials science, three-dimensional image processing and graphics, and Internet technologies.

  • Shaul Hestrin, PhD

    Shaul Hestrin, PhD

    Professor of Comparative Medicine

    Current Research and Scholarly InterestsThe main interest of my lab is to understand how the properties of neocortical neurons, the circuits they form and the inputs they receive give rise to neuronal activity and behavior. Our approach includes behavioral studies, two-photon calcium imaging, in vivo whole cell recording in behaving animals and optogenetic methods to activate or to silence the activity of cortical neurons.

  • Karen G. Hirsch, MD

    Karen G. Hirsch, MD

    Associate Professor of Neurology and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Karen G. Hirsch cares for critically ill patients with neurologic disorders in the intensive care unit and for patients with cerebrovascular disease in the inpatient stroke unit. Dr. Hirsch's research focuses on novel imaging techniques such as functional brain imaging in patients with cardiac arrest and traumatic brain injury. She also studies methods of non-invasive measurement of cerebral blood flow, oxygenation, and cerebrovascular autoregulation and how these parameters might be targeted to improve outcome in patients with neurologic injury. In the outpatient clinic, she sees patients with head injury, stroke and other neurovascular diseases in addition to patients who have been discharged from the neurological intensive care unit.

  • Susan Holmes

    Susan Holmes

    Professor of Statistics
    On Partial Leave from 10/01/2020 To 12/31/2020

    Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
    We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology.

  • Guosong Hong

    Guosong Hong

    Assistant Professor of Materials Science and Engineering

    BioGuosong Hong's research aims to bridge materials science and neuroscience, and blur the distinction between the living and non-living worlds by developing novel neuroengineering tools to interrogate and manipulate the brain in a minimally invasive way. Specifically, the Hong lab is currently developing ultrasound, near-infrared and microwave-based in-vivo neural interfaces with minimal invasiveness and targeted neural specificity.

    Guosong received his Ph.D. degree in chemistry from Stanford University in 2014. His Ph.D. research focused on the development of a new fluorescence imaging method in the second near-infrared window (NIR-II window, 1,000-1,700 nm) to afford deep-tissue penetration in the brain and other biological tissues. During his postdoctoral training at Harvard University, Guosong developed tissue-like mesh electronics neural probes to interrogate the brain and the retina with chronic stability, and is a recipient of the American Heart Association (AHA) Postdoctoral Fellowship and the NIH Pathway to Independence Award (K99/R00). Guosong joined the Stanford faculty in September 2018, and is an assistant professor of Materials Science and Engineering, and the Wu Tsai Neurosciences Institute.

  • Mark Horowitz

    Mark Horowitz

    Yahoo! Founders Professor in the School of Engineering and Professor of Computer Science

    BioProfessor Horowitz initially focused on designing high-performance digital systems by combining work in computer-aided design tools, circuit design, and system architecture. During this time, he built a number of early RISC microprocessors, and contributed to the design of early distributed shared memory multiprocessors. In 1990, Dr. Horowitz took leave from Stanford to help start Rambus Inc., a company designing high-bandwidth memory interface technology. After returning in 1991, he research group pioneered many innovations in high-speed link design, and many of today’s high speed link designs are designed by his former students or colleagues from Rambus.

    In the 2000s he started a long collaboration with Prof Levoy on computation photography, that included work that led to the Lytro camera. Dr. Horowitz's current research interests are quite broad and span using EE and CS analysis methods to problems in neuro and molecular biology to creating new agile design methodologies for analog and digital VLSI circuits. He remains interested in learning new things, and building interdisciplinary teams.

  • SM Hadi Hosseini

    SM Hadi Hosseini

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)

    Current Research and Scholarly InterestsOur lab’s research portfolio crosses multiple disciplines including computational neuropsychiatry, cognitive neuroscience, multimodal neuroimaging and neurocognitive rehabilitation. Our computational neuropsychiatry research mainly involves investigating alterations in the organization of connectome in various neurodevelopmental and neurocognitive disorders using state of the art neuroimaging techniques (fMRI, sMRI, DWI, functional NIRS) combined with novel computational methods (graph theoretical and multivariate pattern analyses).

    The ultimate goal of our research is to translate the findings from computational neuropsychiatry research toward developing personalized interventions. We have been developing personalized interventions that integrate computerized cognitive rehabilitation, real-time functional brain imaging and neurofeedback, as well as virtual reality (VR) tailored toward targeted rehabilitation of the affected brain networks in patients with neurocognitive disorders.

  • Roger Howe

    Roger Howe

    William E. Ayer Professor in Electrical Engineering

    BioDesign and fabrication of sensors and actuators using micro and nanotechnologies, with applications to information processing and energy conversion.

  • Yang Hu, MD, PhD

    Yang Hu, MD, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsThe ultimate goal of the laboratory is to develop efficient therapeutic strategies to achieve CNS neural repair, through promoting neuroprotection, axon regeneration and functional recovery.

    More specifically, we study retinal ganglion cell (RGC) and optic nerve in various optic neuropathies including traumatic, glaucomatous and inflammatory optic nerve injuries to fully understand the molecular mechanisms of CNS neurodegeneration and axon regeneration failure.

  • Ting-Ting Huang

    Ting-Ting Huang

    Associate Professor (Research) of Neurology

    Current Research and Scholarly InterestsWe study the role of oxygen free radicals in oxidative tissue damage and degeneration. Our research tools include transgenic and knockout mice and tissue culture cells for in vitro gene expression.

  • Andrew D. Huberman

    Andrew D. Huberman

    Associate Professor of Neurobiology and of Ophthalmology

    Current Research and Scholarly Interests1) We study the mechanisms of neural degeneration and regeneration with the specific goal of developing treatments to prevent and reverse vision loss. (e.g., Laha and Huberman, Science, 2017; Lim et al., Nature Neuroscience, 2016).

    2) We study the neural circuits that merge visual perceptions with internal states, to drive adaptive behavioral decisions. We are parsing the neural circuits related to anxiety, and visually-driven autonomic arousal (e.g., Salay et al., Nature, 2018).

  • John Huguenard

    John Huguenard

    Professor of Neurology and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe are interested in the neuronal mechanisms that underlie synchronous oscillatory activity in the thalamus, cortex and the massively interconnected thalamocortical system. Such oscillations are related to cognitive processes, normal sleep activities and certain forms of epilepsy. Our approach is an analysis of the discrete components (cells, synapses, microcircuits) that make up thalamic and cortical circuits, and reconstitution of components into in silico computational networks.

  • Keith Humphreys

    Keith Humphreys

    Esther Ting Memorial Professor

    Current Research and Scholarly InterestsDr. Humphreys researches individual and societal level interventions for addictive and psychiatric disorders. He focuses particularly on evaluating the outcomes of professionally-administered treatments and peer-operated self-help groups (e.g., Alcoholics Anonymous), and, analyzing the impact of public policies touching addiction, mental health, public health, and public safety.

  • Robert K. Jackler, MD

    Robert K. Jackler, MD

    Edward C. and Amy H. Sewall Professor in Otorhinolaryngology and Professor, by courtesy, of Neurosurgery and of Surgery
    On Partial Leave from 07/01/2020 To 06/15/2021

    Current Research and Scholarly InterestsTobacco advertising - please see below for details

    Clinical: Development of innovative surgical methods, via the cranial base, to expose inaccessible intracranial disease. Surgical simulation and robotics. Evidence based outcomes analysis in acoustic neuroma and other tumors of the cerebellopontine angle.

    Medical history - especially the history of otology, neurosurgery, deafness, and quackery.

  • Daniel Jarosz

    Daniel Jarosz

    Associate Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Julia Kaltschmidt

    Julia Kaltschmidt

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor in Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences) at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Mechanical Engineering and of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering
    On Leave from 01/01/2020 To 12/31/2020

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    Professor of Developmental Biology and, by courtesy, of Medicine (Endocrinology)

    Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.