Wu Tsai Neurosciences Institute
Showing 101-200 of 597 Results
-
Jenna Davis
Professor of Civil and Environmental Engineering, of Environmental Social Sciences and Higgins-Magid Senior Fellow at the Woods Institute
Current Research and Scholarly InterestsProfessor Davis’ research and teaching deals broadly with the role that water plays in promoting public health and economic development, with particular emphasis on low- and middle-income countries. Her group conducts applied research that utilizes theory and analytical methods from public and environmental health, engineering, microeconomics, and planning. They have conducted field research in more than 20 countries, most recently including Zambia, Bangladesh, and Kenya.
-
Mark M. Davis
Burt and Marion Avery Family Professor
Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.
-
Vinicio de Jesus Perez MD
Associate Dean of Stanford MD Admissions and Professor of Medicine (PACCM)
Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.
-
Charles DeBattista
Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology - Adult)
Current Research and Scholarly InterestsTreatment resistant depression.
Novel biological interventions in the treatment of mental illness.
Anti-glucocorticoid drugs in the treatment of mood disorders.
Augmentation strategies in the treatment of depression. -
Thomas Dee
Barnett Family Professor, Professor of Education, Senior Fellow at the Hoover Institution and at the Stanford Institute for Economic Policy Research
BioThomas S. Dee, Ph.D., is the Barnett Family Professor at Stanford University’s Graduate School of Education (GSE), a Research Associate at the National Bureau of Economic Research (NBER), a Senior Fellow at the Stanford Institute for Economic Policy Research (SIEPR), a Senior Fellow (Joint) at the Hoover Institution, and the Faculty Director of the John W. Gardner Center for Youth and Their Communities. His research focuses largely on the use of quantitative methods to inform contemporary issues of public policy and practice. In 2024, he received the Peter H. Rossi Award for Contributions to the Theory or Practice of Program Evaluation from the Association for Public Policy Analysis and Management (APPAM) and the Outstanding Public Communication of Education Research Award from the American Educational Research Association (AERA).
-
Karl Deisseroth
D. H. Chen Professor, Professor of Bioengineering and of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsKarl Deisseroth's laboratory created and developed optogenetics, hydrogel-tissue chemistry (beginning with CLARITY), and a broad range of enabling methods. He also has employed his technologies to discover the neural cell types and connections that cause adaptive and maladaptive behaviors.
-
Scott L. Delp, Ph.D.
Director, Wu Tsai Human Performance Alliance at Stanford, James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design medical products, and guide surgery. Imaging and health technology development. Discovering the principles of peak performance to advance human health. Human performance research. Wearable technologies, video motion capture, and machine learning to enable large-scale analysis.
-
Utkan Demirci
Professor of Radiology (Diagnostic Sciences Laboratory) and, by courtesy, of Electrical Engineering
BioDr. Utkan Demirci, UofM’99, Stanford’01’05’05, is a Professor of Radiology (with tenure) and of Electrical Engineering (by courtesy) at the Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, where he leads a productive researcher group. Utkan is a tenured professor at Stanford University School of Medicine. Prior to joining Stanford in 2014, he held the position of Associate Professor at the Brigham and Women’s Hospital-Harvard Medical School and also served at the Harvard-MIT Health Sciences and Technology division. Over the past decade, his research group has focused on the early detection of cancer and has made significant contributions to the development of microfluidic platforms for sorting rare cells and exosomes and point-of-care bio-sensing technologies.
Dr. Demirci leads a productive and impactful research group focused on addressing problems from the clinic with innovations including cell sorter for IVF, optical technologies for detecting viruses, portable point of care technologies for diagnostics in global health, smart robots in vivo, extracellular vesicle based early detection approaches for cancer. He is an elected fellow of the American Institute of Medical and Biological Engineering and The Academy for Radiology & Biomedical Imaging Research Distinguished Investigator.
He has published over 250 peer-reviewed articles, 300 abstracts and proceedings, 24 book chapters and editorials, and 7 edited books. He also serves on the editorial board of various journals. He holds 15 patents (11 of which are translated into broadly used biomedical products) and has co-founded multiple successful companies. Dr. Demirci's pioneering work in microfluidics and cell sorting has resulted in CE certified and FDA approved devices used in over 500,000 clinical cases serving patients globally. -
Huiqiong Deng, MD, PhD
Clinical Associate Professor, Psychiatry and Behavioral Sciences
BioDr. Huiqiong Deng is a clinical associate professor of psychiatry. In addition to a medical degree, she earned a PhD, with a major in rehabilitation science and a minor in neuroscience. Specializing in the treatment of alcohol/substance addiction, interventional and cultural psychiatry, her goal is to help each patient along the journey to achieve optimal health and quality of life.
As the co-author of more than a dozen scholarly articles, Dr. Deng’s work has appeared in Psychiatry Research, Journal of Studies on Alcohol and Drugs, American Journal on Addictions, Brain Stimulation, and other publications.
Dr. Deng has won numerous honors and awards such as the National Institute on Drug Abuse Young Investigator Travel Award, the Ruth Fox Scholarship from the American Society of Addiction Medicine, and College on the Problems of Drug Dependence Travel Award for Early Career Investigators. In addition, she was selected to attend the Annual American Psychiatry Association Research Colloquium for Junior Investigators. Since she joined faculty at Stanford, Dr. Deng has received research grant support by the Department of Psychiatry and Behavioral Sciences Innovator Grant Program. -
Jun Ding
Associate Professor of Neurosurgery and of Neurology and Neurological Sciences
Current Research and Scholarly InterestsNeural circuits of movement control in health and movement disorders
-
Jennifer Dionne
Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Radiology (Molecular Imaging Program at Stanford)
BioJennifer (Jen) Dionne is a Professor of Materials Science and Engineering and, by courtesy, of Radiology at Stanford. She is also a Chan Zuckerberg Biohub Investigator, deputy director of Q-NEXT (a DOE National Quantum Initiative), and co-founder of Pumpkinseed, a company developing quantum sensors to understand and optimize the immune system. From 2020-2023, Jen served as Stanford’s Inaugural Vice Provost of Shared Facilities, raising capital to modernize instrumentation, fund experiential education, foster staff development, and support new and existing users of the shared facilities. Jen received her B.S. degrees in Physics and Systems Science and Mathematics from Washington University in St. Louis, her Ph. D. in Applied Physics at the California Institute of Technology in 2009, and her postdoctoral training in Chemistry at Berkeley. As a pioneer of nanophotonics, she is passionate about developing methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her research has developed culture-free methods to detect pathogens and their antibiotic susceptibility; amplification-free methods to detect and sequence nucleic acids and proteins; and new methods to image light-driven chemical reactions with atomic-scale resolution. Jen’s work has been featured in NPR, the Economist, Science, and Nature, and recognized with the NSF Alan T. Waterman Award, a NIH Director’s New Innovator Award, a Moore Inventor Fellowship, and the Presidential Early Career Award for Scientists and Engineers. She was also featured on Oprah’s list of “50 Things that will make you say ‘Wow’!”. She also perceives outreach as a critical component of her role and frequently collaborates with visual and performing artists to convey the beauty of science to the broader public.
-
Scott Dixon
Associate Professor of Biology
Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.
-
Diana Do, MD
Professor of Ophthalmology
Current Research and Scholarly InterestsDr. Do's research focuses on collaborative clinical trials to investigate novel treatments for retinal vascular diseases and ocular inflammation. She performs research to develop state of the art therapies for age-related macular degeneration, diabetic eye disease, retinal vein occlusion, retinal inflammation, and retinal detachment.
-
Sebastian Doniach
Professor of Applied Physics and of Physics, Emeritus
Current Research and Scholarly InterestsStudy of changes in conformation of proteins and RNA using x-ray scattering
-
Les Dorfman, MD
Professor of Neurology and Neurological Sciences, Emeritus
Current Research and Scholarly InterestsClinical electrophysiology of the peripheral and central nervous systems, including nerve conduction velocity; electromyography (EMG); and visual, auditory and somatosensory evoked potentials. Multiple sclerosis (MS) diagnosis and treatment. Neurological education.
-
Anthony G. Doufas, M.D., Ph.D.
Professor of Anesthesiology, Perioperative and Pain Medicine (MSD)
Current Research and Scholarly InterestsMy research focuses on the relationship between sleep abnormalities and pain behavior and opioid pharmacology in the postoperative, as well as chronic pain setting. More specifically, I am interested in delineating the effect of the different components of sleep-diosordered breathing, like nocturnal recurrent hypoxemia and sleep fragmentation on pain behavior in the acute and/or chronic care setting.
-
Ron Dror
Cheriton Family Professor and Professor, by courtesy, of Structural Biology and of Molecular & Cellular Physiology
Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.
-
David Drover
Professor of Anesthesiology, Perioperative and Pain Medicine (MSD), Emeritus
Current Research and Scholarly InterestsField of clinical pharmacology. This involves analysis of what the body does to a drug (pharmacokinetics) and how exactly a specific drug affects the body (pharmacodynamics). His research starts at the level of new drug development with detailed analysis of the pharmacokinetics and pharmacodynamics of a medication.
-
Shaul Druckmann
Associate Professor of Neurobiology, of Psychiatry and Behavioral Sciences and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsOur research goal is to understand how dynamics in neuronal circuits relate and constrain the representation of information and computations upon it. We adopt three synergistic strategies: First, we analyze neural circuit population recordings to better understand the relation between neural dynamics and behavior, Second, we theoretically explore the types of dynamics that could be associated with particular network computations. Third, we analyze the structural properties of neural circuits.
-
Justin Du Bois
Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology
BioResearch and Scholarship
Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.
The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.
In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models. -
Alfredo Dubra, PhD
Professor of Ophthalmology
Current Research and Scholarly InterestsOur lab seeks to help the early diagnosing and monitoring progression of ocular, vascular, neurodegenerative and systemic diseases through novel non-invasive optical ophthalmic imaging. We pursue this goal through a multidisciplinary approach that integrates optics, computer science, vision science, electrical engineering and other engineering disciplines.
-
Laramie Duncan
Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)
Current Research and Scholarly InterestsOur work is at the intersection of statistical genetics, psychiatry, and neuroscience. We use massive datasets and primarily computational approaches to identify mechanisms contributing to mental health problems like schizophrenia and depression. The overall goal of the lab is to discover fundamental information about psychiatric disorders, and ultimately to build more effective approaches to classification, prevention, and treatment.
-
Alexander Dunn
Professor of Chemical Engineering
Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.
-
James Dunn
Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsIntestinal lengthening for short bowel syndrome
Intestinal stem cell therapy for intestinal failure
Skin derived precursor cell therapy for enteric neuromuscular dysfunction
Intestinal tissue engineering -
Emmanuel During, MD
Member, Wu Tsai Neurosciences Institute
Current Research and Scholarly InterestsImproving diagnostics and therapeutics in RBD, using home ambulatory devices including wearable actigraphy, dry-EEG, to power clinical trials based on objective outcomes of RBD activity.
Controlling symptoms of RBD testing drugs rigorously.
Predicting the course of neurodegeneration using deep phenotyping using clinical and serum biomarkers, measures of autonomic impairment, skin biopsy, microbiome -
Shirit Einav
Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsOur basic research program focuses on understanding the roles of virus-host interactions in viral infection and disease pathogenesis via molecular and systems virology single cell approaches. This program is combined with translational efforts to apply this knowledge for the development of broad-spectrum host-centered antiviral approaches to combat emerging viral infections, including dengue, coronaviruses, encephalitic alphaviruses, and Ebola, and means to predict progression to severe disease.
-
Abbas El Gamal
Hitachi America Professor in the School of Engineering and Senior Fellow at the Precourt Institute for Energy
BioAbbas El Gamal is the Hitachi America Professor in the School of Engineering and Professor in the Department of Electrical Engineering at Stanford University. He received his B.Sc. Honors degree from Cairo University in 1972, and his M.S. in Statistics and Ph.D. in Electrical Engineering both from Stanford University in 1977 and 1978, respectively. From 1978 to 1980, he was an Assistant Professor of Electrical Engineering at USC. From 2003 to 2012, he was the Director of the Information Systems Laboratory at Stanford University. From 2012 to 2017 he was Chair of the Department of Electrical Engineering at Stanford University. His research contributions have been in network information theory, FPGAs, and digital imaging devices and systems. He has authored or coauthored over 230 papers and holds 35 patents in these areas. He is coauthor of the book Network Information Theory (Cambridge Press 2011). He has received several honors and awards for his research contributions, including the 2016 Richard W. Hamming Medal, the 2012 Claude E. Shannon Award, and the 2004 INFOCOM Paper Award. He is a member of the U.S. National Academy of Engineering and a Fellow of the IEEE. He has co-founded and served on the board of directors and advisory boards of several semiconductor and biotechnology startup companies.
-
Cameron Ellis
Assistant Professor of Psychology
BioDr. Cameron Ellis is an Assistant Professor in the Department of Psychology. He leads the Scaffolding of Cognition Team, which focuses on the question: What is it like to be an infant? His team uses methods from neuroscience and cognitive science to assess the basic building blocks of the developing mind and answer this question. They are particularly interested in questions about how infants perceive, attend, learn, and remember. One prominent approach they use is fMRI with awake behaving infants. This provides unprecedented ways to access the cognitive mechanisms underlying the infant mind.
Dr. Ellis received his Ph.D. from Yale University in 2021. Before that, he received a Masters from Princeton University (2017) and a Bachelor of Science from Auckland University, New Zealand (2013). He was awarded the FLUX Dissertation Prize (2021) and the James Grossman Dissertation Prize (2021), as well as the William Kessen Teaching Award (2019). -
Edgar Engleman
Professor of Pathology and of Medicine (Immunology and Rheumatology)
Current Research and Scholarly InterestsDendritic cells, macrophages, NK cells and T cells; functional proteins and genes; immunotherapeutic approaches to cancer, autoimmune disease, neurodegenerative disease and metabolic disease.
-
Neir Eshel, MD, PhD
Assistant Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)
BioDr. Eshel (he/him/his) is a tenure-track Assistant Professor in the Department of Psychiatry & Behavioral Sciences at Stanford University School of Medicine.
His clinical focus is the full-spectrum mental health care of sexual and gender minorities, with particular interest in depression, anxiety, and the complex effects of trauma in this population. He works in collaboration with other primary care and mental health providers at the Stanford LGBTQ+ program.
His research interests (www.staarlab.com) include the use of optogenetic, electrophysiological, neuroimaging, and behavioral approaches to probe the neural circuits of reward processing, decision making, and social behavior. He has won multi-year grants from the National Institutes of Health, Burroughs-Wellcome Fund, Brain and Behavior Research Foundation, and Simons Foundation to further his research.
Dr. Eshel has published articles on dopamine and motivation, the neuroscience of irritability, LGBTQ health, reward and punishment processing in depression, behavioral predictors of substance use among adolescents, and the mechanism of transcranial magnetic stimulation. His work has appeared in Nature, Science, Neuron, Nature Neuroscience, Annual Review of Neuroscience, JAMA, JAMA Psychiatry, Neuropsychopharmacology, Proceedings of the National Academy of Sciences, and Journal of Neuroscience. He is a co-inventor on a patent pending for a new class of drugs for addiction, and also the author of the book Learning: The Science Inside, a publication of the American Association for the Advancement of Science.
He has delivered presentations on the neural circuits of motivated behavior, anger expression in patients with PTSD, how dopamine facilitates learning, and LGBTQ-related topics at departmental seminars in London, Zurich, and Tel Aviv, and at the meetings of the American College of Neuropsychopharmacology, Society of Biological Psychiatry, and Association of American Medical Colleges, among others. He is also an associate editor of the Journal of Gay and Lesbian Mental Health, and an ad-hoc reviewer for numerous publications including Nature, Science, JAMA Psychiatry, Biological Psychiatry, and Current Biology.
Dr. Eshel has won honors for his scholarship and advocacy, including the Marshall Scholarship, the Outstanding Resident Award from the National Institute of Mental Health, the Science and SciLifeLab Grand Prize for Young Scientists, the Freedman Award (honorable mention) from the Brain and Behavior Research Foundation, the Polymath Award from Stanford's psychiatry department, and the National LGBT Health Achievement Award.
He is a member of the American Psychiatric Association, American College of Neuropsychopharmacology, Society of Biological Psychiatry, Association of Gay & Lesbian Psychiatrists, Society for Neuroscience, and other professional associations. He is also an advocate for LGBTQ rights, recently serving as the chair of Stanford's LGBTQ+ Benefits Advocacy Committee.
Prior to Stanford, Dr. Eshel trained and conducted research at the National Institutes of Health, Princeton University, the World Health Organization, University College London, and Harvard University. -
Robert Michael Fairchild
Assistant Professor of Medicine (Immunology and Rheumatology)
Current Research and Scholarly InterestsDr. Fairchild’s research interests center on novel applications of ultrasonography in rheumatologic disease. Current active research endeavors include using ultrasound 1) to evaluate articular and soft tissue manifestations of systemic sclerosis, 2) to screen, detect and monitor of connective tissue disease associated interstitial lung disease, 3) and applying deep learning techniques to rheumatology ultrasound and imaging.
-
Ryann Fame, PhD
Assistant Professor of Neurosurgery
Current Research and Scholarly InterestsEarly neural progenitors respond to extrinsic cues that maintain and support their potency. These stem/ progenitor cells are in direct contact with the cerebrospinal fluid (CSF), which acts as part of their niche. Our research program encompasses the early neural stem cell niche, neural tube closure, CSF, metabolism, and cortical neuronal development. We are dedicated to broad collaboration focused on translating an understanding of neurodevelopment and CSF biology into regenerative strategies.
-
Jonathan Fan
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.
-
Judith Ellen Fan
Assistant Professor of Psychology, by courtesy, of Education and of Computer Science
BioI direct the Cognitive Tools Lab (https://cogtoolslab.github.io/) at Stanford University. Our lab aims to reverse engineer the human cognitive toolkit — in particular, how people use physical representations of thought to learn, communicate, and solve problems. Towards this end, we use a combination of approaches from cognitive science, computational neuroscience, and artificial intelligence.
-
Rongxin Fang
Assistant Professor of Neurosurgery and, by courtesy, of Genetics
BioRongxin received his Ph.D. in Bioinformatics and Systems Biology at UC San Diego, where he was advised by Bing Ren (2015-2019). During this time, he developed high-throughput genomic technologies and computational tools to map the structure and activity of the mammalian genome at a large scale with single-cell resolution. He then applied these approaches to understand how cis-regulatory elements such as enhancers in the genome control gene expression and how this process can give rise to the distinct gene expression programs that underlie the cellular diversity in the mammalian brain. As an HHMI-Damon Runyon Postdoctoral Fellow in the laboratory of Xiaowei Zhuang at Harvard University (2019-2024), he developed and applied genome-scale and volumetric 3D transcriptome imaging methods to map the molecular and cellular architecture of the mammalian brain during evolution and aging. He also participated in the collaboration with Adam Cohen and Catherine Dulac to combine transcriptome imaging with functional neuronal recording to identify neuronal populations in the animal brain that underlie specific bran functions.
-
C. Garrison Fathman
Professor of Medicine (Immunology and Rheumatology), Emeritus
Current Research and Scholarly InterestsMy lab of molecular and cellular immunology is interested in research in the general field of T cell activation and autoimmunity. We have identified and characterized a gene (GRAIL) that seems to control regulatory T cell (Treg) responsiveness by inhibiting the Treg IL-2 receptor desensitization. We have characterized a gene (Deaf1) that plays a major role in peripheral tolerance in T1D. Using PBC gene expression, we have provisionally identified a signature of risk and progression in T1D.
-
Vivian Feig
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Feig lab aims to develop low-cost, noninvasive, and widely-accessible medical technologies that integrate seamlessly with the human body. We accomplish this by developing functional materials and devices with dynamic mechanical properties, leveraging chemistry and physics insights to engineer novel systems at multiple length scales. In pursuit of our goals, we maintain a strong emphasis on integrity and diversity, while nurturing the intellectual curiosity and holistic growth of our team members as researchers, communicators, and leaders.
-
Heidi M. Feldman
Ballinger-Swindells Endowed Professor of Developmental and Behavioral Pediatrics
On Partial Leave from 03/01/2025 To 05/04/2025Current Research and Scholarly InterestsMy current research program focuses on infants born preterm, before 32 weeks gestation from two language environments: English and Spanish. The study considers how neurobiological factors, specifically properties of the white matter circuits in the brain, interact with social, psychological, and economic factors to predict language processing efficiency at 18 months of age.
-
Marcus Feldman
Burnet C. and Mildred Finley Wohlford Professor
Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China
-
Liang Feng
Associate Professor of Molecular and Cellular Physiology and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsWe are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.
-
Russell D. Fernald
Benjamin Scott Crocker Professor of Human Biology, Emeritus
Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)
-
Juan Carlos Fernandez-Miranda
Professor of Neurosurgery and, by courtesy, of Otolaryngology - Head & Neck Surgery (OHNS)
BioDr. Juan Fernandez-Miranda is Professor of Neurosurgery and Surgical Director of the Stanford Brain Tumor, Skull Base, and Pituitary Centers. He is internationally renowned for his expertise in minimally invasive brain surgery, endoscopic skull base and pituitary surgery, open skull base surgery, and complex brain tumor surgery. He has performed nearly 3,000 cranial operations including over 1,500 endoscopic endonasal operations for pituitary tumors and other skull base lesions. He is highly regarded for his innovative contributions to the development and refinement of endoscopic endonasal skull base surgery, for his ability to select the most effective and less invasive approach to each individual patient, and for his precise knowledge of the intricate anatomy of the white matter tracts required to maximize resection and minimize morbidity on high and low grade glioma patients. He has been recently ranked by Expertscape as World-Expert (top 0.05%) on Skull Base Surgery and #1 Neurosurgeon Expert on Skull Base Tumors (pituitary adenomas, meningiomas, craniopharyngiomas, chordomas, chondrosarcomas, schwannomas and esthesioneuroblastomas) on the US Pacific Region. He is co-founder and vice-president of the International Rhoton Society and executive member of the Board of Directors of the The Neurosurgical Atlas, the largest nonprofit organization for neurosurgical education and research in the world.
Dr. Fernandez-Miranda completed neurosurgery residency at La Paz University Hospital in Madrid, Spain. Upon completion of his residency, he was awarded the Sanitas Prize to the best medical postgraduate trainee in the country. From 2005 to 2007, he underwent fellowship training in microsurgical neuroanatomy at the University of Florida under legendary neurosurgeon Albert L. Rhoton, Jr. From 2007 to 2010 he continued subspecialty clinical training in cerebrovascular surgery at the University of Virginia, and endoscopic endonasal and open skull base surgery at University of Pittsburgh Medical Center (UPMC). During his 10-year tenure at UPMC, he pioneered endoscopic endonasal approaches to highly complex pituitary and skull base tumors, developed a world-class complex brain surgery program, and led a premier training and research program on surgical neuroanatomy and skull base surgery.
In 2018, he was recruited to bring to Stanford his unique technical expertise and to collaborate with world-renowned Stanford colleagues across multiple disciplines, leading the establishment of one of the most preeminent centers worldwide for comprehensive treatment of complex lesions in the brain, skull base, and pituitary regions. His top priority is to provide gentle, accurate, and safe surgery, in a team-based and compassionate approach to patient care. -
Katherine Ferrara
Professor of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsMy focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.
-
James Ferrell
Professor of Chemical and Systems Biology and of Biochemistry
Current Research and Scholarly InterestsMy lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.
-
Andrew Fire
George D. Smith Professor of Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly InterestsWhile chromosomal inheritance provides cells with one means for keeping and transmitting genetic information, numerous other mechanisms have (and remain to be) discovered. We study novel cellular mechanisms that enforce genetic constancy and permit genetic change. Underlying our studies are questions of the diversity of inheritance mechanisms, how cells distinguish such mechanisms as "wanted" versus "unwanted", and of the consequences and applications of such mechanisms in health and disease.
-
Daniel Fisher
Marjorie Mhoon Fair Professor
Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer
-
Paul Graham Fisher, MD
Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health
On Partial Leave from 07/15/2024 To 07/13/2025Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.
-
Philip Andrew Fisher
Diana Chen Professor of Early Childhood Learning and Professor, by courtesy, of Pediatrics
BioDr. Philip Fisher is the Diana Chen Professor of Early Childhood Learning in the Graduate School of Education at Stanford. His research, which has been continuously funded by the National Institutes of Health since 1999, focuses on developing and evaluating scalable early childhood interventions in communities, and on translating scientific knowledge regarding healthy development under conditions of adversity for use in social policy and programs. He is particularly interested in the effects of early stressful experiences on children's neurobiological and psychological development, and in prevention and treatment programs for improving children's functioning in areas such as relationships with caregivers and peers, social-emotional development, and academic achievement. He is currently the lead investigator in the ongoing RAPID-EC project, a national survey on the well-being of households with young children during the COVID-19 pandemic. Dr. Fisher is also interested in the brain's plasticity in the context of therapeutic interventions. He is the developer of a number of widely implemented evidence-based interventions for supporting healthy child development in the context of social and economic adversity, including Treatment Foster Care Oregon for Preschoolers (TFCO-P), Kids in Transition to School (KITS), and Filming Interactions to Nurture Development (FIND). He has published over 200 scientific papers in peer reviewed journals. He is the recipient of the 2012 Society for Prevention Research Translational Science Award, and a 2019 Fellow of the American Psychological Society.
-
Robert Fisher, MD, PhD
The Maslah Saul, MD, Professor and Professor, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsDr. Fisher is interested in clincal, laboratory and translational aspects of epilepsy research. Prior work has included: electrical deep brain stimulation for epilepsy, studied in laboratory models and clinical trials; drug delivery to a seizure focus; mechanisms of absence epilepsy studied with in vitro slices of brain thalamus; hyperthermic seizures; diagnosis and treatment of non-epileptic seizures, the post-ictal state; driving and epilepsy; new antiepileptic drugs; surgery for epilepsy.
-
Matthew Fitzgerald, PhD
Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS)
Current Research and Scholarly InterestsMy research encompasses several translational projects. One focus is to modify the routine audiologic test battery such that it places equal weight on hearing acuity and hearing function. This work includes measures of speech in noise, or electrophysiologic responses such as the FFR. I also explore tools to better assess and maximize performance in users of hearing aids and cochlear implants. Finally, I am also investigating the benefits of telemedicine, and new treatments for tinnitus.
-
Pamela Flood
Adjunct Clinical Professor, Anesthesiology, Perioperative and Pain Medicine
BioDr. Flood is a Professor at Stanford University who is fellowship trained in Pain Medicine and Obstetric Anesthesiology. She specializes in the treatment of chronic pelvic pain and multiple aspects of women's health including the prevention of chronic pain after childbirth. Research interests include the role of multimodal treatment in chronic pain conditions and prevention of persistent opioid use. Her research has spanned from detailed pharmacodynamic analysis, clinical trials to population health.
-
Sean Follmer
Associate Professor of Mechanical Engineering and, by courtesy, of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design
-
Sai Folmsbee, MD, PhD
Clinical Assistant Professor, Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsMy current research interest is the intersection of psychiatry and neuroimmunology. I am currently collaborating with Stanford Neuroimmunology in a retrospective analysis of patient data to determine the relationship between psychaitric medications and clinical outcomes in hospitalized patients with mutliple sclerosis, autoimmune encephalitis, and neuromyelitis optica.
-
Polly Fordyce
Associate Professor of Bioengineering and of Genetics
Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.
-
Emily Fox
Professor of Statistics and of Computer Science
On Partial Leave from 10/01/2024 To 06/30/2025BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.
Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities. -
Michael Frank
Benjamin Scott Crocker Professor of Human Biology and Professor, by courtesy, of Linguistics
On Leave from 10/01/2024 To 06/30/2025Current Research and Scholarly InterestsHow do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.
-
Hunter Fraser
Professor of Biology
Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.
Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing. -
Shai Friedland
Professor of Medicine (Gastroenterology and Hepatology)
Current Research and Scholarly Interests1. Gastrointestinal Endoscopy- Techniques and Outcomes
2. Noninvasive colorectal cancer screening
3. Medical device development in gastroenterology -
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Takako Fujioka
Associate Professor of Music
BioResearch topics include neural oscillations for auditory perception, auditory-motor coupling, brain plasticity in development and aging, and recovery from stroke with music-supported therapy.
Her post-doctoral and research-associate work at Rotman Research Institute in Toronto was supported by awards from the Canadian Institutes of Health Research. Her research continues to explore the biological nature of human musical ability by examining brain activities with non-invasive human neurophysiological measures such as magnetoencephalography (MEG) and electroencephalography (EEG). -
Sanjiv Sam Gambhir, MD, PhD
Member, Bio-X
Current Research and Scholarly InterestsMy laboratory focuses on merging advances in molecular biology with those in biomedical imaging to advance the field of molecular imaging. Imaging for the purpose of better understanding cancer biology and applications in gene and cell therapy, as well as immunotherapy are all being studied. A key long-term focus is the earlier detection of cancer by combining in vitro diagnostics and molecular imaging.
-
Surya Ganguli
Associate Professor of Applied Physics, Senior Fellow at the Stanford Institute for Human-Centered AI and Associate Professor, by courtesy, of Neurobiology and of Electrical Engineering
Current Research and Scholarly InterestsTheoretical / computational neuroscience
-
Xiaojing Gao
Assistant Professor of Chemical Engineering
Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.
-
Chris Garcia
Younger Family Professor and Professor of Structural Biology
Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.
-
Justin Gardner
Associate Professor of Psychology
Current Research and Scholarly InterestsHow does neural activity in the human cortex create our sense of visual perception? We use a combination of functional magnetic resonance imaging, computational modeling and analysis, and psychophysical measurements to link human perception to cortical brain activity.
-
Joseph Garner
Professor of Comparative Medicine and, by courtesy, of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsThe medical research community has long recognized that "good well-being is good science". The lab uses an integrated interdisciplinary approach to explore this interface, while providing tangible deliverables for the well-being of human patients and research animals.
-
Brice Gaudilliere
Associate Professor of Anesthesiology, Perioperative and Pain Medicine (MSD) and, by courtesy, of Pediatrics (Neonatology)
Current Research and Scholarly InterestsThe advent of high dimensional flow cytometry has revolutionized our ability to study and visualize the human immune system. Our group combines high parameter mass cytometry (a.k.a Cytometry by Time of Flight Mass Spectrometry, CyTOF), with advanced bio-computational methods to study how the human immune system responds and adapts to acute physiological perturbations. The laboratory currently focuses on two clinical scenarios: surgical trauma and pregnancy.
-
Andrew Gentles
Associate Professor (Research) of Pathology, of Medicine (BMIR) and, by courtesy, of Biomedical Data Science
Current Research and Scholarly InterestsComputational systems biology
-
Paul George, MD, PhD
Associate Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery
Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.
BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.
APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes. -
Olivier Gevaert
Associate Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science
Current Research and Scholarly InterestsMy lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.
-
William Giardino
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)
On Partial Leave from 04/01/2025 To 11/30/2025Current Research and Scholarly InterestsWe aim to decipher the neural mechanisms underlying psychiatric conditions of stress, addiction, and sleep/circadian dysregulation. Our work uses combinatorial technologies for precisely mapping, monitoring, and manipulating neural circuits that regulate emotional states. We are especially focused on the behavioral functions of neuropeptide molecules acting throughout the circuitry of the extended amygdala- particularly in a brain region called the bed nucleus of the stria terminalis (BNST).
-
Erin Gibson
Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)
Current Research and Scholarly InterestsGlia make up more than half of the cells in the human brain, but we are just beginning to understand the complex and multifactorial role glia play in health and disease. Glia are decidedly dynamic in form and function. Understanding the mechanisms underlying this dynamic nature of glia is imperative to developing novel therapeutic strategies for diseases of the nervous system that involve aberrant gliogenesis, especially related to changes in myelination.
-
Rona Giffard
Professor of Anesthesiology, Perioperative and Pain Medicine, Emerita
Current Research and Scholarly InterestsAstrocytes, microglia and neurons interact, and have unique vulnerabilities to injury based on their patterns of gene expression and their functional roles. We focus on the cellular and molecular basis of brain cell injury in stroke. We study the effects of altering miRNA expression, altering levels of heat shock and cell death regulatory proteins. Our goal is to improve outcome by improving mitochondrial function and brain cell survival, and reducing oxidative stress and inflammation.
-
William Gilly
Professor of Oceans
Current Research and Scholarly InterestsMy work has contributed to understanding electrical excitability in nerve & muscle in organisms ranging from brittle-stars to mammals. Current research addresses behavior, physiology and ecology of squid through field and lab approaches. Electronic tagging plus in situ video, acoustic and oceanographic methods are used to study behaviors and life history in the field. Lab work focuses on control of chromogenic behavior by the chromatophore network and of locomotion by the giant axon system.
-
Lisa Giocomo
Professor of Neurobiology
Current Research and Scholarly InterestsMy laboratory studies the cellular and molecular mechanisms underlying the organization of cortical circuits important for spatial navigation and memory. We are particularly focused on medial entorhinal cortex, where many neurons fire in spatially specific patterns and thus offer a measurable output for molecular manipulations. We combine electrophysiology, genetic approaches and behavioral paradigms to unravel the mechanisms and behavioral relevance of non-sensory cortical organization. Our first line of research is focused on determining the cellular and molecular components crucial to the neural representation of external space by functionally defined cell types in entorhinal cortex (grid, border and head direction cells). We plan to use specific targeting of ion channels, combined with in vivo tetrode recordings, to determine how channel dynamics influence the neural representation of space in the behaving animal. A second, parallel line of research, utilizes a combination of in vivo and in vitro methods to further parse out ionic expression patterns in entorhinal cortices and determine how gradients in ion channels develop. Ultimately, our work aims to understand the ontogenesis and relevance of medial entorhinal cortical topography in spatial memory and navigation.
-
Aaron D. Gitler
Stanford Medicine Basic Science Professor
Current Research and Scholarly InterestsWe investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.
-
Jeffrey S. Glenn, M.D., Ph.D.
Joseph D. Grant Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsDr. Glenn's primary interest is in molecular virology, with a strong emphasis on translating this knowledge into novel antiviral therapies. Other interests include exploitation of hepatic stem cells, engineered human liver tissues, liver cancer, and new biodefense antiviral strategies.
-
Gary Glover
Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Psychology and of Electrical Engineering
Current Research and Scholarly InterestsMy present research is devoted to the advancement of functional magnetic resonance imaging sciences for applications in basic understanding of the brain in health and disease. We collaborate closely with departmental clinicians and with others in the school of medicine, humanities, and the engineering sciences.
-
Garry Gold
Stanford Medicine Professor of Radiology and Biomedical Imaging
Current Research and Scholarly InterestsMy primary focus is application of new MR imaging technology to musculoskeletal problems. Current projects include: Rapid MRI for Osteoarthritis, Weight-bearing cartilage imaging with MRI, and MRI-based models of muscle. We are studying the application of new MR imaging techniques such as rapid imaging, real-time imaging, and short echo time imaging to learn more about biomechanics and pathology of bones and joints. I am also interested in functional imaging approaches using PET-MRI.
-
Jeffrey Goldberg, MD, PhD
Blumenkranz Smead Professor
Current Research and Scholarly InterestsLab research on molecular mechanisms of survival and regeneration in the visual system; retinal development and stem cell biology; nanoparticles and tissue engineering. Clinical trials in imaging, biomarker development, and neuroprotection and vision restoration in glaucoma and other neurodegenerative diseases.
-
Andrea Goldsmith
Stephen Harris Professor in the School of Engineering, Emerita
BioAndrea Goldsmith is the Dean of Engineering and Applied Science and the Arthur LeGrand Doty Professor of Electrical and Computer Engineering at Princeton University. She was previously the Stephen Harris Professor of Engineering and Professor of Electrical Engineering at Stanford University, where she is now Harris Professor Emerita. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and biomedical devices. She founded and served as Chief Technical Officer of Plume WiFi (formerly Accelera, Inc.) and of Quantenna (QTNA), Inc, and she serves on the Board of Directors for Intel (INTC), Medtronic (MDT), Crown Castle Inc (CCI), and the Marconi Society. She also serves on the Presidential Council of Advisors on Science and Technology (PCAST). Dr. Goldsmith is a member of the National Academy of Engineering, the Royal Academy of Engineering, and the American Academy of Arts and Sciences. She is a Fellow of the IEEE and has received several awards for her work, including the Marconi Prize, the ACM Sigmobile Outstanding Contribution Award, the IEEE Sumner Technical Field Award, the ACM Athena Lecturer Award, the ComSoc Armstrong Technical Achievement Award, the Kirchmayer Graduate Teaching Award, the WICE Mentoring Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications,” “Principles of Cognitive Radio,” and “Machine Learning and Wireless Communications,” all published by Cambridge University Press, as well as an inventor on 29 patents. She received the B.S., M.S. and Ph.D. degrees in Electrical Engineering from U.C. Berkeley.
Dr. Goldsmith is the founding Chair of the IEEE Board of Directors Committee on Diversity and Inclusion. She served as President of the IEEE Information Theory Society in 2009, as founding Chair of its Student Committee, and as founding Editor-in-Chief of the IEEE Journal on Selected Areas in Information Theory. She has also served on the Board of Governors for both the IEEE Information Theory and Communications Societies. At Stanford she served as Chair of Stanford’s Faculty Senate and for multiple terms as a Senator, and on its Academic Council Advisory Board, Budget Group, Committee on Research, Planning and Policy Board, Commissions on Graduate and on Undergraduate Education, Faculty Women’s Forum Steering Committee, and Task Force on Women and Leadership. -
Andrea Goldstein-Piekarski
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)
BioDr. Goldstein-Piekarski directs the Computational Psychiatry, Neuroscience, and Sleep Laboratory (CoPsyN Sleep Lab) as an Assistant Professor in the Department of Psychiatry and Behavioral Sciences at Stanford University School of Medicine and PI within the Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC) at the Palo Alto VA. She received her PhD in 2014 at the University of California, Berkeley where she studied the consequences of sleep on emotional brain function. She then completed a Postdoctoral fellowship at Stanford focusing on understanding the brain basis of anxiety and depression.
As the director of the CoPsyN Sleep Lab she is developing a translational, interdisciplinary research program that combines human neuroimaging, high-density EEG sleep recording, and computational modeling to understand the neural mechanisms through which sleep disruption contributes to affective disorders, particularly depression, across the lifespan. The ultimate goals of this research are to (1) develop mechanistically-informed interventions that directly target aspects of sleep and brain function to prevent and treat affective disorders and (2) identify novel biomarkers which can identify which individuals are most likely to experience improved mood following targeted sleep interventions.
This work is currently supported by The KLS Foundation, a R01 from National Institute of Mental Health, and a R61 from the National Institute of Mental Health. -
Natalia Gomez-Ospina
Assistant Professor of Pediatrics (Genetics)
Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.
1) Lysosomal storage diseases:
Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease
2) Point of care ammonia testing
She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.
3) Gene discovery
Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.
For more information go to our website:
https://www.gomezospina.com/ -
Miriam B. Goodman
Mrs. George A. Winzer Professor of Cell Biology
Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and chemical stressors that compromise touch sensation in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We collaborate with physicists and other physiologist to expand our experimental research.
-
Deborah M Gordon
Paul S. and Billie Achilles Professor of Environmental Biology
Current Research and Scholarly InterestsProfessor Deborah M Gordon studies the evolutionary ecology of collective behavior. Ant colonies operate without central control, using local interactions to regulate colony behavior.
-
Ian Gotlib
Marjorie Mhoon Fair Professor
Current Research and Scholarly InterestsCurrent interests include social, cognitive, and biological factors in affective disorders; neural and cognitive processing of emotional stimuli and reward by depressed persons; behavioral activation and anhedonia in depression; social, emotional, and biological risk factors for depression in children.
-
Henry T. (Hank) Greely
Deane F. and Kate Edelman Johnson Professor of Law and, Professor, by courtesy, of Genetics
Current Research and Scholarly InterestsSince 1992 my work has concentrated on ethical, legal, and social issues in the biosciences. I am particularly active on issues arising from neuroscience, human genetics, and stem cell research, with cross-cutting interests in human research protections, human biological enhancement, and the future of human reproduction.
-
Tamar Green
Associate Professor of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Sciences) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsThe Brain Imaging, Development, and Genetic (BRIDGE) Lab focuses on disorders associated with child development, such as attention deficits, hyperactivity, and autism spectrum disorders. we aim to uncover biological principles of how genetic variation and its associated downstream pathways affect children's neurodevelopmental disorders.
-
William Greenleaf
Professor of Genetics
Current Research and Scholarly InterestsOur lab focuses on developing methods to probe both the structure and function of molecules encoded by the genome, as well as the physical compaction and folding of the genome itself. Our efforts are split between building new tools to leverage the power of high-throughput sequencing technologies and cutting-edge optical microscopies, and bringing these technologies to bear against basic biological questions by linking DNA sequence, structure, and function.